

-USAFOEHL REPORT

89-016EQ0146CEF

COMPLIANCE TESTING OF CONSUMAT AND FAIRCHILD HILLER SILVER RECLAMATION INCINERATORS, OFFUTT AFB NE

JAMES A. GARRISON, Maj, USAF, BSC

March 1989

Final Report

Distribution is unlimited; approved for public release

USAF Occupational and Environmental Health Laboratory **Human Systems Division (AFSC)** Brooks Air Force Base, Texas 78235-5501

When Government drawings, speciffications, or other data are used for any purpose other than a definitely related accermment procurement operation, the Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the drawing, specifications, or other data, is not to be regarded by implication, or otherwise, as in any manner it, ensing the hotor or any other person or comporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endersement or recommendation for use by the United States Air Force.

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication

James a. Larrison JAMES A. GARRISON, Maj, USAF, BSC Chief, Air Quality Function

DENNIS R. SKA, FA. LY COT, USAF, BSC Chief. Consultant Services Division

Air Force installations may direct requests for copies of this report to: USAF Occupational and Environmental Health Laboratory (USAFOEML) Library. Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DIIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

JAMES C. ROCK, Colonel, USAF, BSC

James C. Rock

Commander

	_	A. PC			A PICAL	7.	*	A
31		, ~ 7	I L A	131PIL.	ATION	() P	1 10 1	PAUL

REPORT D	OCUMENTATIO	N PAGE			Form Approved OMB No. 0734 3138
1a. REPORT SECURITY CLASSIFICATION Unclassified		16 RESTRICTIVE	MARKINGS		
2a. SECURITY CLASSIFICATION AUTHORITY N/A			for public :		•
2b. DECLASSIFICATION/DOWNGRADING SCHEDU N/A		Distribut	ion is unli	mited.	
4. PERFORMING ORGANIZATION REPORT NUMBE USAFOEHL Report 89-016EQ0146CE		5 MONITORING	ORGANIZATION F	REPORT NU	MBER(S)
6. NAME OF PERFORMING ORGANIZATION USAF Occupational and Environ-	6b OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION	
mental Health Laboratory. 6c. ADDRESS (City, State, and ZIP Code)	ECO	75 ADDRESS (Cit	ty, State, and ZIP	Code)	
Brooks AFB TX 78235-5501 80. NAME OF FUNDING / SPONSORING ORGANIZATION	8b Offic ë S YMBOL (If applicable)		T INSTRUMENT ID		ON NUMBER
Same as 6a B: ADDRESS (City, State, and ZIP Code)	<u> </u>	10 SOURCE OF	FUNDING NUMBER	RS	
		PROGRAM ELEMENT NO	PROJECT NO.	TASK NO	WORK UNIT ACCESSION NO
Same as 6c 11 TITLE (Include Security Classification)			<u> </u>	<u> </u>	
Hiller Silver Reclamation Inc 12 PERSONAL AUTHOR(S) Mai James A. Garrison 13a TYPE OF REPORT 13b. TIME CO		14. DATE OF REPO	ORT (Year, Month,	Day) 15.	PAGE COUNT 129
17 COSATI CODES FIELD GRÖUP SUB-GROUP >>	18 SUBJECT TERMS (Compliance Test Stack Sampling)	ing	offutt Garrison	Partic	i
19 ABSTRACT (Continue on reverse if necessary	Stationary Sour	ce Testina:	Air Polluti		en chroride (
At the request of HQ SAC/SGPB, on four silver reclamation inci accomplished on 1-11 Nov 1988. of Environmental Control. The hydrogen chloride and heavy met zinc) even though a standard do incinerators 1, 2 and 3 are in failed to meet standard with re	compliance test nerators locate Testing was re State of Nebras al (antimony, a es not exist fo compliance with spect to visible	ing for part d in Bldg D, quired by the ka requested rsenic, cadm r these pollo applicable	Offutt AFB e State of A the evaluat ium, lead, n utants. Res	NE. To lebraskation of mercury, sults in ards. I	esting was a Department emissions for silver and adicate that incinerator 4
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNL/MITED 3 SAME AS R	PT DTIC USERS	Unclassif			EICE SYMBOL
22a NAME OF RESPONSIBLE INDIVIDUAL Maj James A. Garrison		226 TELEPHONE ((512) 536-33	305 AV 240	US	AFOEHL/ECQ
DD Form 1473, JUN 86	Previous editions are	obsolete.	SECURITY	CLASSIFICA	TION OF THIS PAGE

reduced white the following of the control of the country of the control of the c

CATENTS

			Page
	DD FORM 147 [llustration		i iv
!.	INTRODUCTIO	N	1
::.	DISCUSSION		1
ιι.	CONCLUSIONS	AND RECOMMENDATIONS	21
	References		22
	Appendix		
	A	Personnel Information	23
	8	State Regulations	27
	Ü	Incinerator 1 Field Data	31
	ט	Incinerator 2 Field Data	45
	F.	Incinerator 3 Field Data	59
	F	Incinerator 4 Field Data	73
	G	Calibration Data	87
	Н	Acetone Blank Results and Particulate Emissions	105
		Calculations	
	Ţ	Hydrogen Chloride Emissions Calculations	117
	J	Example of Heavy Metals Emissions Calculations	121
	Distribution	n List	125

Acces	ion For	1
DTIC	ounced	0000
By Distrib	ution/	
A	vailability	Codes
Dist	Avail and Specia	
A-1		

Illustrations

Figure	Title	P ag e
1	Silver Reclamation Incinerator	3
2	Incinerator - Front View	4
1 2 3 4 5 6 7 8	Incinerator - Side View	5
4	Incinerator - Top View	C
5	Incinerator - Combustion System	7
6	Transition Duct and Free Standing Stack	B
7	Schematic of Incinerator Exhaust Stacks	9
8	Incinerator Exhaust Stacks	10
9	View of Sampling Ports and Platforms	14
10	Grab Sampling Train	15
11	Orsat Apparatus	15
12	Particulate Sampling Train	1.
Table		
1	Incinerator Combustion Cycle	11
2	Test Conditions	13
1 2 3 4	Particulate Emissions Test Results	18
4	Hydrogen Chloride Emissions Test Results	19
5	Heavy Metals Emissions Test Results	20

1. INTRODUCTION

on 1-11 November 1988, compliance testing was accomplished on four silver reclamation incinerators located in Bldg D, Offutt AFB NE. Testing was conducted by personnel of the Consultative Services Division, Environmental quality dranch, Air Quality Function of the USAF Occupational and Environmental Health Laboratory (USAFOEHL/ECQ). The survey was requested by HQ SAC/3GPB to determine compliance with particulate emission standards as defined under Nebraska Air Pollution Control Rules and Regulations. Personnel involved with on-site testing are listed in Appendix A.

11. DISCUSSION

A. Background

In 1986, three silver reclamation incinerators were in operation and being used for film destruction and silver recovery. During an inspection of the incinerators, representatives of the Nebraska Department of Environmental Control determined that one or more of the units failed to meet opacity standards in accordance with Chapter 17 (Visible Emissions; Prohibited) of the Nebraska Air Pollution Control Rules and Regulations. The base was subsequently cited for failure to meet applicable regulations governing incineration emissions and operation of the incinerators was halted until source emission testing was accomplished on each unit. The state required that the incinerators meet both the standards for opacity and particulate emissions.

Because of the noncompliance status of the incinerators, HQ SAC/SGPB requested that USAFOEHL conduct emissions testing of the units to determine compliance. Testing was first accomplished in September 1986. The USAFOEHL source team conducted particulate emissions testing while State personnel determined visible emissions. Emissions data were analyzed on-site with the intent of determining compliance status during testing so that contractor personnel (available during testing) could make adjustments to the incinerators if found to be out of compliance.

Test results indicated that incinerators 1 and 2 failed to meet both the visible and particulate emissions standards; and, contractor personnel could not correct the operation of these two units to meet standards. Therefore, the state would not allow units 1 and 2 to continue operation. Incinerator 3 met both the visible and particulate emissions standards and was allowed to continue operation. After test results were known, a decision was made by appropriate base agencies to replace incinerators 1 and 2.

B. Site Description

Presently, there are four silver reclamation incinerators in operation. The incinerators are owned and operated by the 544th Target Materials Squadron. Incinerators 1, 2 and 4 are new units manufactured by Consumat Systems, Inc. and designated as a Model C-75 SR, Consumat Waste Disposal System. Incinerator 3 is one of the original units tested in 1986 and is a Consumat manufactured unit which was marketed by Fairchild Hiller and designated as a Model 1150, Transportable Silver Reclamation Processor. Each

unit is self-contained and used to destroy classified photographic film with the ashes sent to a contractor for silver recovery. Each system is completely refractory lined and has a capacity of 600 pounds per 24 hour period (lbs/24 hr) for the Model C-75 and 800 lbs/24 hr for the Model 1150. Both models are similar in appearance (Fig 1).

The incinerators are cylindrically shaped units consisting of three major components or assemblies: (1) combustion chamber, (2) a transition assembly and (3) a control box (Figs 2-5). The combustion chamber houses the loading door, ash removal port and the two primary burners. In this area, the film is volatilized and reduced to ash.

The transition assembly houses the afterburner and is located on top of the combustion chamber. Exhaust gases and particulate matter from the combustion chamber enter the transition assembly where combustion is completed. The intended design of the chamber is such that gas exit velocities from the chamber to the transitional assembly are so low that most particles remain in the chamber to be further reduced to ash. In the transition assembly, fine particulate matter is completely oxidized and carbon monoxide is converted to carbon dioxide to complete the combustion process. Exhaust gases from the transition assembly pass through a transitional exhaust duct section to a "free standing" stack. The transition and stack are shown in Figure 6. A separate free standing exhaust stack is dedicated to each incinerator. Each stack extends vertically through the roof of the building to a height of approximately 30 feet as shown in Figures 7 and 8.

The control box houses a forced air blower and electrical circuitry. The blower provides forced air to the combustion chamber to purge the chamber, aid in burning, and cool the transition assembly and combustion chamber at the end of the operating cycle. The electrical circuitry contains those subsystems which control and monitor the operation of the incinerator such as timers to control burner and blower cycles, pyrometer temperature monitor, air supply valves and others.

A typical operating scenario begins when the combustion chamber is loaded with film (normally 500-600 lbs). After purging the combustion chamber with air and preheating the afterburner section, the film is ignited by the primary burners. The desirable action is to volatilize the film by partial oxidation. Most particulate material remains in the combustion chamber to be further reduced to ash. The evolved gases and entrained fine particles are vented to the transition stage. Gas velocity increases as the gases are inducted into the flame of the afterburner. Combustion air is also supplied at this point. Because of the added heat and air, the hot gases and particles begin to burn and the combustion process is completed. The complete combustion and cool down cycle takes approximately 24 hours. The typical operation cycle is shown in Table 1.

Figure 1. Silver Reclamation Incinerator

Figure 2. Incinerator Front View

Figure 3. Incinerator Side View

Figure 4. Incinerator Top View

Section Z-Z Stack Conn. After-burner Air Supply Duct Refractory-Lined -Transition Assembly Steel Shell -Cast Refractory Control Box Lining Combustion Chamber D -Blower Loading Door Primary Burner Ports-Elect. - Gas Asbestos Gasket -Air Inlet Holes Air Plenum Lower Air Chamber Supply Duct Ash Removal Door--Leg Ash Removal Pan

Figure 5. Incinerator Combustion System

Figure 6. Transition Duct and Free Standing Stack

Figure 7. Schematic of Incinerator Exhaust Stack

Figure 8. Incinerator Exhaust Stacks

TABLE 1. INCINERATOR COMBUSTION CYCLE

Time Into Cycle(hrs)	Event
0.0	Afterburner on for preheat
	Blower on
0.5	Primary burners on to start film combustion process
1.0	Primary burners off
12.0	Afterburner off
20.0	Blower off
23.0	Ash removed from combustion chamber

C. Applicable Standards

State standards applicable to incinerators used for refuse disposal or processing of salvageable materials are defined under the Nebraska Code of Rules and Regulations, Department of Environmental Control, Title 129 - Nebraska Air Pollution Control Rules and Regulations, Chapters 11 and 17. These regulations are found in Appendix B.

1. Chapter 11 - Incinerators; Emission Standards

Chapter 11 prohibits the emission of particulate matter in excess of 0.2 grains of particulate matter per standard dry cubic foot of exhaust gas (gr/dscf), corrected to 12% carbon dioxide (${\rm CO}_2$), from any incinerator with a waste burning capacity less than 2,000 pounds per hour.

2. Chapter 17 - Visible Emissions; Prohibited

Chapter 17 prohibits emissions from any existing source which are of a shade or density equal to or darker than that designated as No. 1 on the Ringelmann chart or equivalent opacity of 20%.

D. Sampling Methods and Procedures

The Nebraska Code of Rules and Regulations, Title 129, Chapter 21 requires that emission testing be conducted in accordance with Appendix A to Title 40, Code of Federal Regulations, Part 60 (40 CFR 60). Therefore, sample train preparation, sampling and recovery, calculations and quality assurance were done in accordance with the methods and procedures outlined in 40 CFR 60, Appendix A. The state requested that emission testing be directed towards the following pollutants:

- 1. Particulate matter
- 2. Hydrogen chloride (HCl)
- 3. Heavy metals: antimony, arsenic, cadmium, lead, mercury, silver, zinc

A State on-site observer evaluated visible emissions.

For testing purposes, the incinerators were operated according to normal day-to-day procedures; this included testing with the normal charge weight of 500 to 600 pounds of film.

Particulate emissions testing was conducted in accordance with EPA Method 5, found in 40 CFR 60, Appendix A. Testing requires three one-hour sample runs per stack; the results of which are averaged for a final emission rate. Based on a request from the state, we tried to start the first sampling run as close to 30 minutes into the incinerator burn as possible. Table 2 provides a summary of test conditions including incinerator start times, run start times, charge weights and stack conditions encountered during testing.

Sampling ports were installed in each stack approximately 4 feet above the roof line which provided sampling sites between 7 and 8 duct diameters downstream (each stack had a slightly different inside diameter) and greater than 2 duct diameters upstream from any flow disturbance. Sampling ports and platforms can be seen in Figure 9. Based on the inside stack diameters, port locations and type of sample (particulate), 16 traverse points (8 per diameter) were used to collect a representative particulate sample. A typical stack cross section and the actual traverse point locations for each stack is provided in Appendixes C-F.

Prior to every sample run on each stack, cyclonic flow was determined by using the Type S pitot tube and measuring the stack gas rotational angle at each traverse point. Flow conditions were considered acceptable when the arithmetic average of the rotational angles was 20 degrees or less. A preliminary velocity pressure traverse was also accomplished at this time.

A grab sample for Orsat analysis (measures oxygen and CO for stack gas molecular weight determination) was taken during each sample run. Orsat sampling and analysis equipment are shown in Figures 10 and 11. Flue gas moisture content, needed for determination of flue gas molecular weight determination, was obtained during particulate sampling.

TABLE 2: TEST CONDITIONS TEST CONDITIONS

INCINERATOR #	RUN #	INCINERATOR START TIME (MILITARY)	RUN START TIME (MILITARY)	CHARGE* WEIGHT (1b)	AYG STACK TEMPERATURE (F)	STACK** FLOWRATE (dscfm)	\$ CO2	% 02
1	1	1330(9 NOV)	1347	523	554	1089	2.2	16.7
1	2	0900(8 NOV)	1100		518	994	2.6	18.2
1	3		1245		493	914	1.8	18.6
2	1	0900	0937	542	648	1007	3.1	17.0
2	2		1221		640	1021	2.5	17.7
2	3		1416		623	987	2.0	18.2
3	ì	0800	0823	529	619	817	2.1	17.3
3	2		1000		627	803	2.5	17.5
3	3		1129		623	771	1.2	17.9
4	1	0930	1020	544	638	1165	3.4	15.6
4	2		1226		587	1105	2.4	15.2
4	3		1421		455	1213	1.6	16.3

^{* 1}b * pounds ** dscfm = DRY STANDARD CUBIC FEET PER MINUTE

Figure 9. View of Sampling Ports and Platforms

Figure 10. Grab Sampling Train

Particulate and HCl samples were collected using the sampling train shown in Figure 12. The train consisted of a button-hook probe nozzle, heated stainless steel-lined probe, heated glass filter, impingers and a pumping and metering device. The nozzle was sized prior to each sample so that the gas stream could be sampled isokinetically. In other words, the velocity at the nozzle tip was the same as the stack gas velocity at each point sampled. Flue gas velocity pressure was measured at the nozzle tip using a Type S pitot tube connected to a 10-inch inclined-vertical manometer. Type K thermocouples were used to measure flue gas as well as sampling train temperatures. The probe liner was heated to minimize moisture condensation. The heated filter was used to collect particulates. The impinger train (first, third and fourth impingers: modified Greenburg-Smith type, second impinger: standard Greenburg-Smith design) was used as a condenser to collect stack gas moisture and HCl. A modification to the condenser was made to accomplish for the collection of HCl; the distilled water normally used in the first two impingers was replaced with known quantities of 0.1 N sodium carbonate to remove water from the gas sample as well as act as the collection media for the HCl. The pumping and metering system was used to control and monitor the sample gas flow rate. Equipment calibration data are found in Appendix G.

Particulate samples were analyzed according to the methods specified in Method 5. HCl samples were analyzed by ion chromatography. Heavy metals were analyzed by first combining the filter and acetone wash for each run, digesting the sample in an acid solution, and using atomic absorption to determine each metal.

E. Results

1. Visible Emissions:

Plume opacity was observed and recorded by the Department of Environmental Control on-site observer. Visible emissions from incinerator 4, run 2 were greater than 20% and, therefore, failed to meet the applicable state standards. Visible emissions from incinerators 1, 2 and 3 were determined to have an opacity of less than 20% and, therefore, met the applicable state standards.

2. Particulate emissions:

Front half or filterable particulate matter (material collected on sampling train surfaces up to and including the filter) was determined for compliance purposes. Condensable particulate matter (material collected in the impingers) was not determined. Field data sheets are found in Appendixes C-F and the resulting particulate emissions calculations are presented in Appendix H. Table 3 provides the final particulate emissions test results. All emissions results were corrected to $12\%\ CO_2$. The average particulate emissions determined for units 1, 2, 3 and 4 were 0.07, 0.10, 0.05 and 0.30 gr/dscf, respectively. Based on the state particulate emission standard of 0.2 gr/dscf, units 1, 2 and 3 meet the state standards. Unit 4 failed to meet the emissions standard because of the high particulate emissions encountered during run 2.

Figure 12. Particulate Sampling Train

TABLE 3: PARTICULATE EMISSION TEST RESULTS

EMISSIONS** CORRECTED TOTAL* CORRECTION STACK GAS TO 12% CO2 FACTOR CATCH (gr/dscf) (12%/%CO2) (gr/dscf) (mg) 202 RUN # %C02 INCINERATOR # ----------0.06 24.0 0.010 5.455 2.2 16.7 1 0.10 47.1 0.021 4.615 2.6 18.2 2 0.008 0.06 6.667 17.6 18.6 1.8 AVG . C.07 0.05 C.013 46.0 3.871 17.0 2 1 3.1 0.18 82.3 0.038 4.800 2.5 17.7 2 0.08 0.014 29,3 6.000 18.2 2.0 AVG = 0.10 0.03 15.7 0.006 5.714 17.3 1 2.1 3 0.04 0.009 22.4 4.800 17.5 2.5 2 800.0 0.08 19.1 10.000 1.2 17.9 3 0.05 AVG * 0.10 0.027 3.529 61.4 15.6 3.4 1 0.73 0.145 15.2 5.000 305.5 2.4 2 0.08 0.010 24.7 16.3 7.500 1.6 3 AVG = 0.30

^{*} mg = milligrams

^{**} gr/dscf = grains per dry standard cubic foot

TABLE 4: HYDROGEN CHLORIDE EMISSION TEST RESTULTS

		TOTAL HC1*	SAMPLE **	STACK GAS***	E M I S S 1	ON 5****
INCINERATOR #	RUN #	COLLECTED (mg)	VOLUME (dscf)	FLOW RATE (dscfm)	(gr/dscf)	(1b/hr)
1	1	14.7	35.9	1089	0.006	0.059
	2	25.0	34.1	994	0.011	0.097
	3	8.7	32.7	914	0.004	0.032
				AYG	= 0.007	0.063
2	1	47.0	53.7	1007	0.014	0.117
	2	11.2	33.7	1021	0.005	0.045
	3	6.0	32.9	987	0.003	0.024
				AYG	= 0.007	0.062
3	1	48.2	39.9	817	0.019	0.131
	2	55.1	38.1	803	0.022	0.154
	3	18.8	38.1	771	0.008	0.050
				AVG	= 0.016	0.112
4	1	26.8	34.6	1165	0.012	0.119
	2	11.1	32.6	1105	0.005	0.050
	3	3.0	36.8	1213	0.001	0.013
				AVG	= 0.006	0.061

[#] mg = milligrams

** dscf = dry standard cubic foot

*** dscfm = dry standard cubic feet per minute

**** gr/dscf = grains per dry standard cubic foot
 lb/hr = pounds per hour

HEAVY METALS EMISSIONS TEST RESULTS TABLE 5:

INCINERATOR #	RUN .	SAMPLE* VOLUME (dscf)	STACK GAS** FLOW RATE (4scfm)				J	EMISSIONS*** (gr/dscf/lb/hr)	1		
-	-	35.9	1089	3	ANTIHONY	ARSENIC	CADMIUM	LEAD	MLRCURY	SILVER	Z1NC
• -	. ~	34.1	766	1.76-	1.7E-5/2.0E-4	•	V	v	6.5E-6/1.0E-4	5.06-4/4.86-3	3.06-4/2.86-3
		32.7	914	2.76-	2.7E-5/2.0E-4	•	v	1.26-5/1.06-4	1.16-5/1.06-4	9.06-4/7.56-3	2.06-4/1.46-3
•				1.86	1.86-5/1.06-4	•	•	•	8.5£-6/1.0£-4	4.0E-4/3.2E-3	2.06-4/1.36-3
				AVG = 2.1E-	2.16-5/1.76-4			3.95-6/3.35-5	8.76-6/1.06-4	6.06-4/5.26-3	2.36-4/1.86-3
~	-	53.7	1001								
2	~	33.7	1021	1.16	1.16-5/1.06-4	•	2.96-6/2.56-5	4.35-6/3.75-5	4.6E-6/4.0E-5	1.0E-3/8.5E-3	2.06-4/1.86-3
· ~	m	32.9	18 6	1.76	1.76-5/2.06-4	J	8.2E-6/1.0E-5	2.76-5/2.06-4	2.6E-5/2.0E-4	6.0E-4/5.0E-3	3.06-4/2.56-3
20.				1.96	1.96-5/2.06-4	v	*	1.2E-5/1.0E-4	1.98-5/2.08-4	6.08-4/2.38-3	5.06-4/4.46-3
				AVG * 1.6E	1.6E-5/1.7E-4		3.76-6/1.26-5	1.46-5/1.06-4	1.76-5/1.06-4	7.3E-4/5.3E-3	3,36-4/2.96-3
m	-	39.9	817								
m	2	38.1	803	1.66	1.66-5/1.06-4	~	•	1.86-5/1.05-4	3.9E-6/2.7E-5	3.0E-4/2.2E-3	2.06-4/1.56-3
m	•	38.1	111	1.6	1.66-5/1.06-4	•	•	1.46-5/1.06-4	5.3E-6/3.6E-5	6.0E-4/4.1E-3	4.0E-4/2.7E-3
				4.16	4.1E-6/2.7E-5	v	•	5.7E-6/3.8E-5	2.0E-7/1.3E-6	2.0E-4/1.1E-3	2.06-4/1.16-3
				AVG = 1.2E	1.26-5/1.06-4			1.2E-5/1.0E-4	3.16-6/2.26-5	3.76-4/2.56-3	2.7E-4/1.8E-3
•	-	34.6	1165								
•	~	32.6	1105	1.6	1.6E-5/2.0E-4	v	5.06-6/5.06-5	8.0E-6/1,0E-4	3.95-5/4.05-4	9.06-4/9.46-3	4.0E-4/4.1E-3
4	e	36.8	1213	1.9£	1.9E-5/2.0E-4	~	8.16-6/1.06-4	2.56-5/2.06-4	4.2E-5/4.0E-4	1.06-3/9.06-3	3.06-4/2.76-3
				1.76	1.76-5/2.06-4	•	~	7.16-6/1.06-4	2.4E-5/2.0E-4	2.05-4/2.05-3	3.06-4/3.66-3
				AVG = 1.7E	1.7E-5/2.0E-4		4.4E-6/5.0E-5	1.36-5/1.36-4	3.5E-5/3.3E-4	7.06-4/6.86-3	3.3E-4/3.5E-3

^{*} dscf * dry standard cubic feet
** dscfm * dry standard cubic feet per minute
*** gr/dscf * grains per dry standard cubic foot
1b/hr * pounds per hour
E-X * 10 raised to the -X power

< * less than the analytical detection limit of 10
micrograms

3. HCl emissions:

At this time, there are no state standards for emissions of HCl. Table 4 presents the final HCl emissions test results. HCl calculations are found in Appendix I.

4. Heavy metal emissions:

At this time, there are no State standards for emissions of those metals for which we tested. Table 5 presents the final metals emissions test results. An example of the heavy metal emissions calculations (zinc) is found in Appendix J.

All calculations were made using the Environmental Protection Agency publication entitled Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators (EPA-340/1-85-013) and associated software programs.

III. CONCLUSIONS AND RECOMMENDATIONS

Compliance testing results indicate that incinerators 1, 2 and 3 are in compliance with applicable State visible and particulate emissions standards. Incinerator 4 failed to meet State compliance standards with respect to both visible and particulate emissions standards. This unit failed to meet emissions standards only on test run 2. Runs 1 and 3 were below applicable standards. It is not known at this time what caused the high degree of plume opacity and particulate emissions during this one test run; however, it appears that a combustion malfunction might have occurred during the run such as a malfunction of a supply air fan or cutback of the secondary burner. We noted that the secondary burner did not shutdown completely because it could be heard operating by the test team.

It is our opinion that a problem with incinerator 4's operation caused it to fail the emission testing. All operational components should be checked, their operation verified, and the unit operated within manufacturer's specifications. If the cause is corrected, a retest of this incinerator would show the incinerator able to meet applicable limits.

REFERENCES

- 1. Standards of Performance for New Stationary Sources, Title 40, Part 60, Code of Federal Regulations, July 1, 1984.
- 2. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, April 1977.
- 3. Source Test Calculation and Check Programs for Hewlett-Packard 41 Calculators, U.S. Environmental Protection Agency ,EPA-340/1-85-018, Research Triangle Park, North Carolina, Sept 1985.

APPENDIX A
Personnel Information

(This page left blank)

1. Test Team

Maj James Garrison, Chief, Air Quality Function Staff Capt Paul Scott, Meteorologist 1Lt Charles Attebery, Consultant, Environmental Quality SrA James Jarbeau, Industrial Hygiene Technician

USAFOEHL/ECQ Brooks AFB TX 78235-5501

2. Offutt AFB on-site representatives

Capt Randall Boyce Ehrling Berquist Strategic Hospital/SGPB AV 271-6372/3714 COM (402)294-6372/3714

Ed Lueninghoener 55 CSG/DEEV

Johnette Shockley 55 CSG/DEEV

Lynn Tungland 55 CSG/DEEV

AV 271-4087/7621

COM (402)294-4087/7621

SSgt Patrick McAlexander 544 TMS/TGOPWL AV 271-3434/4404 COM (402)294-3434/4404

3. State of Nebraska on-site representative

David Meierhenry
Air Quality Division
Inspection and Compliance
Nebraska Department of Environmental Control
Box 94877
Lincoln NE 68509-4877
(402)471-2186

(This page left blank)

APPENDIX B
State Regulations

(This page left blank)

Chapter 9 CONTROLS FOR TRANSFERRING, CONVEYING, RAILCAR AND TRUCK LOADING AT ROCK PROCESSING OPERATIONS IN CASS COUNTY

001 By July 1, 1981, the owner or operator of any rock processiong operation located in Cass County shall install, operate and maintain a system to reduce potential emissions from conveying, transfer operations, and railcar and truck loading by 85 percent Compliance with this Chapter may be demonstrated by the application of a system of sprays, hoods, enclosures, and/or filters deemed adequate by the Director.

Chapter 10 -FUEL BURNING EQUIPMENT: **PARTICULATE** EMISSIONS LIMITATIONS FOR **EXISTING SOURCES**

001 No person shall cause or allow particulate matter caused by the combustion of fuel to be emitted from any stack or chimney into the outdoor atmosphere in excess of the hourly rate set forth in the following table

Total Hear Input in Million, Maximum Allowable Emissions British Therma I nits Per of Particulate Matter in Pounds per Million British Hour Thermal Units

> 10 or less 0 60 To 000 or more

002 The allowable emission rate for equipment having immediate heat input between 10 (106) BTU and 10,000 (106) BTL may be determined by the formula:

 $A = \frac{1.026}{233}$

A = The allowable emission rate in Lb/Hr/10 BTU

I = The total heat input in 10° BTU/Hr

003 For the purpose of these regulations, the heat input shall be the aggregate heat content of all fuels whose products of combustion pass through a stack, or the equipment manufacturer's or designer's guaranteed maximum input, whichever is greater. The total heat input of all fuel burning units at a plant or on a premises shall be used for determining the maximum allowable amount of particulate matter which may be emitted.

EMISSION STANDARDS

001 These regulations shall apply to all existing incinerators used for refuse disposal or for the processing of salvageable materials except refuse incinerators located on residential premises containing five or less dwelling units and used exclusively for the disposal of waste originating on said premises.

002 No person shall cause or permit emissions of particulate matter to be discharged into the outdoor atmosphere:

002.01 From any incinerator with a waste burning capacity less than 2,000 pounds per hour, to exceed 0.2 grains of particulate matter per standard dry cubic foot of exhaust gas, corrected to twelve percent (12%) carbon dioxide.

002.02 From any incinerator with a waste burning capacity equal to or in excess of 2,000 pounds per hour, to exceed 0.1 grains of particulate matter per standard dry cubic foot of exhaust gas, corrected to twelve percent (12%) carbon dioxide. In correcting the grain loading to twelve percent (12%) carbon dioxide, the exhaust gases contributed by the burning of a liquid or gaseous fuel shall be excluded.

003 The burning capacity of an incinerator shall be the manufacturer's or designer's guaranteed maximum rate or such other rate as may be determined by the Director in accordance with good engineering practice.

004 Waste burned during performance testing required by Chapter 21 shall be representative of the waste normally generated by the affected facility and shall be charged at a rate equal to the burning capacity of the incinerator. Copies of any additional operational data recorded during the test shall be submitted to the Department together with the completed test report forms.

Chapter 12 - HAZARDOUS AIR POLLUTANTS: **EMISSION STANDARDS**

001 Not withstanding any other provisions of these regulations, the "National Emissions Standards for Hazardous Air Pollutants", published at 40 CFR Sections 61.01-61.18, 61.30-61.71, 61.110-61.112, 61.140-61.247 for beryllium, beryllium rocket motor firing, mercury, vinyl chloride, equipment leaks (fugitive emission sources) of benzene, asbestos, and equipment leaks (fugitive emission sources) of

Chapter 11 - INCINERATORS; tively, effective July 1, 1985, as amended at 50 Fed. Reg. 46290 (November 7, 1985), are hereby adopted and incorporated into these regulations. Appendices A. B. and C of 40 CFR Part 61 are also adopted and incorporated into these regulations

Chapter 13 - SULFUR COMPOUND **EMISSIONS; EMISSION STANDARDS**

001 No person shall allow sulfur oxides to be emitted from any existing fossil fuel burning equipment in excess of two and one half (2.5) pounds per million BTU input, maximum 2-hour average.

002 For the purpose of these regulations, the heat input shall be the aggregate heat content of all fuels whose products of combustion pass through a stack, or the equipment manufacturer's or designer's guaranteed maximum input, whichever is greater. The total heat input of all fuel burning units at a plant or on a premises shall be used for determining the maximum allowable amount of sulfur dioxide which may be emitted.

003 No person shall cause or allow sulfur oxides to be emitted from any existing equipment, other than fuel burning equipment, in excess of the following limits:

003.01 During any consecutive 12month period, sulfur oxides in excess of the amount emitted during the 1971 calendar vear.

003.02 During any 24-hour period, sulfur oxides exceeding the maximum amount emitted during any consecutive 24-hour period during the 1971 calendar

003.03 Nothing in sections 003.01 and 003.02 of this Chapter shall be construed to allow sources to conduct operations not in accordance with Chapters 4 and 6.

003.04 Nothing in 003.01, 003.02 or 003.03 of this Chapter shall be interpreted to allow any source to operate in violation of emergency reduction plans pursuant to Chapter 25.

003.05 If emission data for sulfur dioxide for the 1971 calendar year is not available, estimates of emissions shall be made based on materials processed or produced and appropriate emission factors developed by the U.S. Environmental Protection Agency.

Chapter 14 - NITROGEN OXIDES (CALCULATED AS NITROGEN DIOXIDE); EMISSIONS STANDARDS FOR EXISTING STATIONARY **SOURCES**

001 Nitric Acid Manufacturing - No hazardous volatile air pollutants, respec- owner or operator of an installation producing nitric acid either as an end product or for use in intermediate steps in production of other products will exceed the following limitations on the emission of oxides of nitrogen (calculated as nitrogen dioxide):

001.01 5.5 pounds per ton of 100 percent nitric acid produced; or

001.02 A concentration of nitrogen dioxide equivalent to 400 parts per million (p.p.m.) by volume, whichever is more stringent.

Chapter 15 — OPEN FIRES, PROHIBITED; EXCEPTIONS

001 No person shall cause or allow any open fires.

002 Exceptions

002.01 Fires set solely for recreational purposes or for outdoor cooking of food for human consumption on other than commercial premises and no nuisance or hazard is created.

002.02 Fires set for the purpose of training public and industrial fire fighting personnel.

002.03 Fires set in the operation of smokeless flare stacks for the combustion of waste gases, provided they meet the requirements of Chapter 17, Visible Emissions for Stationary Sources.

002.04 Fires set in an agricultural operation where no nuisance or traffic hazard is created. For the purpose of this regulation, "fires set in an agricultural operation" shall mean:

002.04A The burning of any trees or vegetation indigenous to the property of the owner or person in lawful possession of the land; and

002.04B The burning of any agriculturally related material potentially hazardous and where disposal by burning is recommended by the manufacturer. Such materials must have been used on the owner's property or person in legal possession of the said property.

002.05 Unless prohibited by local ordinances, fires set to destroy household refuse on residential premises containing ten or less dwelling units, by individuals residing on the premises and no nuisance or traffic hazard is created.

002.06 For the purpose of plant and wildlife and parks management, provided such burning is conducted by the Nebraska Game Commission, the United States

Forest Service, or the University of Nebraska.

002.07 Unless prohibited by local ordinances or regulations, fires set with the written permission of the Director:

002.07A For the purpose of destroying dangerous materials, diseased trees, or abatement of a fire hazard.

002.07B For the purpose of land clearing for roads or other construction activity.

002.07C For the purpose of destroying wood and trees at community land disposal sites, in which case such burning must be distinctly separate from the disposal area for non-burnables.

002.08 Permits for open fires as specified in this regulation will be granted only if there is no other practical means of disposal. Any burning of materials not specified in the burning permit will result in immediate withdrawal of the permit.

Chapter 16 — RESPONSIBILITY; DEFINED

001 It shall be prima facie evidence that the person who owns or controls property on which burning occurs has caused or permitted said open burning.

Chapter 17 — VISIBLE EMISSIONS; PROHIBITED (EXCEPTIONS DUE TO BREAKDOWNS OR SCHEDULED MAINTENANCE: SEE CHAPTER 22)

001 No person shall cause or allow emissions, except steam, from any existing source, which are of a shade or density equal to or darker than that designated as No. 1 on the Ringelmann Chart, or equivalent opacity of twenty percent (20%).

002 Exceptions:

002.01 No person shall cause or allow emissions from any existing teepee waste wood burner which are of a shade or density equal to or darker than that designated as No. 2 on the Ringelmann Chart, or equivalent opacity of forty percent (40%).

002.02 No person shall cause or allow emissions from any existing alfalfa dehydration plant dryer which are of a shade, density or opacity greater than thirty percent (30%).

002.03 This rule shall not be applied to food processing ovens in Dodge County until April 30, 1981.

003 All new sources shall comply with section 001 of this Chapter unless a New Source Performance Standard applies as specified in Chapter 6.

Chapter 18 — DUST; DUTY TO PREVENT ESCAPE OF

001 Handling, Transportation, Storing. No person may cause or permit the handling, transporting or storage of any material in a manner which may allow particulate matter to become airborne in such quantities and concentrations that it remains visible in the ambient air beyond the premises where it originates.

002 Construction, Use, Repair, Demolition. No person may cause or permit a building or its appurtenances or a road, or a driveway, or an open area to be constructed, used, repaired or demolished without applying all such reasonable measures as may be required to prevent particulate matter from becoming airborne so that it remains visible beyond the premises where it originates. The Director may require such reasonable measures as may be necessary to prevent particulate matter from becoming airborne, including but not limited to paving or frequent cleaning of roads, driveways and parking lots; application of dust-free surfaces; application of water; and the planting and maintenance of vegetative ground cover.

Chapter 19 — COMPLIANCE; TIME SCHEDULE FOR

001 Except as otherwise noted in specific emission control regulations, compliance to these regulations shall be according to the following schedule:

001.01 All new or modified installations that required approval under the provisions of Chapter 6 shall be in compliance with all applicable emission control regulations at start-up any time after the effective date of the applicable emission control regulation. Provided, however, such installation may, at the request of the operator and under conditions approved by the Department, be operated for such specified time periods as are required to make necessary adjustments on the equipment. Compliance must be demonstrated in conformance with Chapter 21.

001.02 All existing installations and open burning operations subject to Chapter 4, 004 shall be in compliance with

APPENDIX C
Incinerator 1 Field Data

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Stack ID: #1 Stack	diameter at ports: 1.42 (ft)
Distance A (ft)	(duct diameters) >2
Recommended number of traverse	points as determined by
distance A: 8	
Distance B (ft)	(duct diameters) > 7
Recommended number of traverse	points as determined by
distance B: 12	
Number of traverse points used:	16

STACK TRAVERSE POINT LOCATIONS

STACK DIAMETERS (inches)

Stack #1 = 17.0

Stack #2 = 16.5

Stack #3 = 13.4

Stack #4 = 18.3

	·	STA	CK #	
	D	ISTANCE FROM	WALL(inches	s)
POINT NUMBER	*1	#2	#3	
1	0.5	0.5	0.5	0.6
2	1.7	1.7	1.4	1.9
3	3.3	3.2	2.6	3.5
4	5.5	5.3	4.3	5.9
5	11.5	11.2	9.1	12.4
6	13.7	13.3	10.8	14.8
7	15.2	14.8	12.0	16.4
8	16.5	16.0	12.9	17.7

PARTICULATE SAMPLING DATA SHEET	SCHEMATIC OF STACK CROSS SECTION EQUATIONS CIMINGLE LAT: OR = O1 + 460	# [13044CrA] T. T. V.	TO THE SETTING	Preference 15mm post leaded Si-117 4/1 m	[-1.24 cd-133c; (2.54)	THE 1347	IC STACK TEMP VELOCITY ORIFICE GAS GAS GAS WETER TEMP SAMPLE IMPINGER GAS GAS GAS GAS GAMPLE TEMP GAMPLE TEMP GAMPLE TEMP GAMPLE TEMP GAS GAMPLE TEMP GAMPLE TEMP GAS GAMPLE TEMP GAMP GAMP GAMP GAMP GAMP GAMP GAMP GA	4 38	4 452 424 1.42	5. 5.5. 7.5. 7.7. 7.3. 5.2.	5 543 100 1.20 910 150 68 54 248 52		2 3.2	2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1/2 - 1/2	
	CHAIRSE WI	75					20) (%	1373	-2.0 6.5		-2.5 54	15 8.5-		Sant Sur	ا احلت ا ات	
178X # 1			77.	IUMB: R	+		SAMPLING TIME (min)	<i>*</i>	> .	3	**	23		237	1,1	
/ INCINERITER	RUN NUMBER	of Men	BASE C. F. J. J.	EJAC BOX NUMBER	120 TRC H Qw/Qm	ರೆ	TRAVERSE POINT NUMBER	1	5	2	X1 78		1-3	7 2 7 6	IT E	MBOS LORM

	AIR POLL	UTION PARTICU	LATE ANA	LYTICAL	DATA	**************************************	
BASE BUILDING NUMBER		orre of Many	چ چ چین افزاد می	:	RUN WUMBER		
Blig	D	PARTIC	-NO		/12.2 #	1	
	ITEN	FINAL W	EIGHT	1917	AL BEIGHT	BEIGHT PAI	
F LTER NUMBER		Ø. 29	95	<i>a</i> .	<u>"848</u>	C' C'	
AUSTONE WASHINGS Half Prices	S (Ptobe, Emnt			ŧ	.853	1	
BACK HALF (If need	ud)			1			
			sight of Partic	uleres Ce I	oc red	<i>6.424</i>	Ø
н.		FINAL W					
	ITEM	· · · · · · · · · · · · · · · · · · ·			AL WEIGHT	WEIGHT (
MPINGER 1 (N20)		.207) <u>(</u>	.2	OU. 4	7	Z)
IMPINGER 2 (H20)		206.	Ü	20	ct.t	6.0	Z ⁱ
IMPINGER 3 (DW)		1. ≰			⊄.	1.0	,
IMPINGER 4 /SIIIca 0	•()	268	268.6 200.0			8,6	
			ight of Water	Collected		27.6	B ETT
III.	ANALYSIS	GASES ANALYSIS 2		YS1 S	ANALYSIS	AVE	RAGE
∨οι - co ₂	2.2	2.2	2	. 2		7 .	2_
vol • 02	16.6	16,8	16	, 8		16.	
VOL % CO							
VOL % N2					······································		
		Vel % N2 ± (100% - %	co ₂ .%o ₂ .	% CO)			

IMCINERIARS	7# 22H			PARTI	TE	SAMPLING DATA	SHEET				
RUN NUMBER		SCHEMA	SCHEMATIC OF STACK CROSS SECTION	CROSS SE	CTION	EQUATIONS			AMB	AMBIENT YEND	
13	8					09+ ± ₀ ≡ & ₀	,		¥ + 5	STATION PRESS	
S / KC)	5		4			H = 5130 F40	- 	d /		77.3	116
30 78	Ω		Q			D.t. i clark goo	ا دا	r.			
BASE OFFUT	/		ج ا ا			Pre le . Vr c Briege at	4 0 115	المجمع	1011	PROBE HEATER SETTING	9 <u>2</u>
SAMPLE BOX NUMBER	UMBER	نـ	7			post gent	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- ROB	PROBE LENGTH	† †
R17C										18	nj.
WETER BOX NUMBER	MBER T								NOTTE	AREA THE	1 ps
Çw/Q m									Ü	0.84	
3						Start him	1991		A MC	DHT GAS FHACTION (F.S.	
TRAVERSE	SAMPLING	STATIC	STACK TEMP	EMP	VELOCITY	ORIFICE	GAS	GAS METER	TENTEMP	SAMPLE	IMPINGE H
NUMBER	TIME (@1n)	PRESSURE (in H20)	(oF)	(Ts) (oR)	HEAD (Vp)	PRESS.	SAMPLE VOLUME	N-	Avc Oct	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A i	0	-3.0	482		ond,	0.5	724.738	-	1	724	1
~,	4,5	-3.0	500		090	6,75		~ ?(5.5	233	12/2
(2, 2, 2, 2, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	2,7	7 7		2/9	6,2,0		-5/	ich.	め、ナン	15 M
16	18.0	-5.6	15.53		2,54	89		42		12.5	ノン・
9	22.5	-5.d	550		4900	1.04		65	58	255	5
7	77.0	5.4	547	+	, 69¢	1.09		9/5)	55	26.7	17
200	51.5	5.0	246	+	1885	1.065	7-10-960	66	57	267	ध
									-		-
<u>B1</u>		Ø′p−	994		970'	4.57		65	13	252	.56
74	4.5	1 •	511		270	6.51		175	79	256	57
4	13.5	4,50	7		2000	20.0		57	69	150	78
S	18.6	7,6	7		586	1.62			23	756	53
6	22.5	1 f	h6 h		3101	(6.0)			65	253	73
7	27.0	-5.6	CoS		580	1.60		7.7	57	253	52
g	31.5	-5.0	715		986	707	75pm \$17	13	77	259	-6.5
J		6	-	(C	112	7,4		
1 m	25 TS	518	, H = Ø.	9),	DS15 = 1	(2)(3)	100	57 7	1		7.74
											Pr.
DEHL FORM	18										

BUILDING NUMBER BUILDING NUMBER I. ITEM FILTER NUMBER ACETONE WASHINGS (Probe, Front	PARTICI FINAL W	SOURCE NU //YC/A	INIT	RUN HUMBER 2 OR # / IAL WEIGHT (den)	WEIGHT PARTICLES (Am) Ø. U. 315	
BUILDING NUMBER BUILDING NUMBER I. ITEM FILTER NUMBER ACETONE WASHINGS (Probe, Front	PARTICI FINAL W	SOURCE NU //YC/A	INIT	OR # /	(@ m)	
IS L.DG ID ITEM FILTER NUMBER ACETONE WASHINGS (Probo, Front	FINAL W	/YC/A ULATES EIGHT 15¢	INIT	IAL WEIGHT	(@ m)	
I. ITEM FILTER NUMBER ACETONE WASHINGS (Probe, Front	FINAL W	EIGHT	INIT O: 2	IAL WEIGHT	(@ m)	
FILTER NUMBER ACETONE WASHINGS (Probe, Front	FINAL W	EIGHT , 15¢	0.2	(gan)	(gm)	
FILTER NUMBER ACETONE WASHINGS (Probe, Front	0,3	15¢				
ACETONE WASHINGS (Probe, Front				2835	0.0315	
	95.82	95.8243				
Hall Filter)		- ' 	45.	8087	1.4156	
BACK HALF (if needed)						
	Total We	eight of Partie	culates Coll	ected	6.4471 am	
и.	WAT		1			
ITEM	FINAL W		INIT	IAL WEIGHT	WEIGHT WATER	
IMPINGER 1 <i>(H20)</i>	202	<i>b</i>	<u> </u>	60. \$	2.6	
IMPINGER 2 (H20)	208.	Φ	20	90.¢	8.6	
IMPINGER 3 (Diff)	1.0	1.0		ϕ	1.0	
IMPINGER 4 (Silica Gel)	209.2		200.4		9.2	
	Total We	ight of Water	Collected	,	20.2	
III. ANALYSIS	GASES ANALYSIS	ANAL		ANALYSIS	AVERAGE	
1	2		3	4		
VOL 7. CO ₂ 2.4	2.6		6		2.6	
vol * 02 18, Z	18,6	18.	2		2.6 18.2	
VOL % CO						
VOL % N ₂						
Vel	% N ₂ = (100% - % (CO ₂ .%O ₂ .	% CO)	•		

וארומצהאבת	1 # 7,7214			PART	ICULATE SA	ARTICULATE SAMPLING DATA SHEET	SHEET				
RUN NUMBER		SCHEM	SCHEMATIC OF STACK CROSS SECTION	C CROSS SI	ECTION	EQUATIONS			AMBI	AMBIENT TEMP	
Ŋ						6				42	i.
DATE	*					00++4 II K	-		STAT	STATION PRESS	5
DNO S			į			5130	7	E L		78.474	SH C
PLANT 7	C		Š				°CO	Ts · Vp	HEAT	HEATER BOX TEMP	
		<u> </u>	r K			D. 100105	at 150 th	(Mary)	1		OF
OFF	11		1			To The Carry State of the Local	2001 100 120	ا بردده	90	PROBE HEALER SETTING	ט
SAMPLE BOX NUMBER	UMBER		1			X POST /	11 . 0	,	PROB	LENGTH	
R17C						1.23/18a/	1 ×1× 1	2021	\frac{1}{-}	70	.,
METER BOX NUMBER	MBER						,		NOZZ	E ABEA (A)	and a
100 100 TO 100 T	#	T								,376	sq ft
									රි	19 to	
ပ							full	>/ -	DRY	DRY GAS FRACTION (Fd)	3
TRAVERSE	SAMPLING	STATIC	STACK TEMP	EMP	VELOCITY	ORIFICE	GAS	GAS MET	GAS METER TEMP	SAMPLE	MPINOR
NUMBER	T1ME (B1n)	PRESSURE (in H20)	(oF)	(Ts) (°R)	HEAD (Vp)	PRESS.	SAMPLE VOLUME	N C	AVG OUT	BOX	OUTLET
_	C	3, 5	777		47.64	(ii)	15/ J//	-	7	(4oF)	(0F)
7	45	2.0	490			The state of the s	7011	36	9,	470	7.
د	9.6	9,12-	432	-	229	6.78		1,6	30	200	22
31	13.5	-2.6	516		,076	689		26	67	757	414
7	18,0	5/2-	525		. 08 to	997		20	12	250	53
25	` '	-4.5	188		680	1.04		17.	1.7	253	54
3	27.0	200	- 17X7	1	686	7.02		75	67	25.3	R
2	1	d	+//		4000	120		1	77	25.5	3
		,									
- (2 2	_1	48%	1	010	6,79		71	108	754	25
*		-2.6	220	+	970	27.2		77	89	755	3,5
4	26,		10%	-	27.6%	2,00		1/2	8	255	N. S.
5	(8.0	13.5	7967		67.60	12°, 47°		12	20.	1227	J.
9		-5.0	148		, (b)&	6.47		125	6/	36.2	7.7
7	0.13	-3.4	7267		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \			72	22	221	7,4
00	31.5	-3.6	\$67		186	7.07	788 6675	72	68	552	34
1	11	'	1	,							
T =	17	493	AH = 00,		PS15=	3,47,48		1367			
)										
DEHL FORM	82										

	AIR POL	LUTION PARTICE	LATE ANA	LYTICA	L DATA	
BASE	ì	DATE	~~~~~		RUN NUMBER	
OFFUTT		381018 	SOURCE NO	MOTO	3	
BLDG 1	D		1		10R #1	
1.		PARTIC	ULATES	<u> </u>	76	
	ITEM	FINAL (INIT	IAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER		<i>Ø.</i> 2	97¢	0.	2895	0.0075
ACETONE WASHING: Half Filter)	S (Probe, Front	95.3	917	95	3816	0.0101
BACK HALF (if need	led)					
		Total W	eight of Partic	culates Call	ected	O.\$176 ·
и.		WA'	TER VEIGHT	INIT	IAL WEIGHT	WEIGHT WATER
	ITEM	(60			(gm)	(gm)
IMPINGER 1 (H20)		200	4	20	00	4.0
IMPINGER 2 (H20)		200	4	20	00	4.00
IMPINGER 3 (Dig)		1	1.0		()	1.0
IMPINGER 4 (SIIIca O	208	208,3		0	8,3	
		Tatal W	Total Weight of Water Collected		17.3 gm	
III.	ANALYSIS 1	GASE: ANALYSIS 2	(Dry)	. YSIS 3	ANALYSIS 4	AVERAGE
VOL % CO2	1.8	1.8	1,	8		1.8
۷۵۲ ۵ ۵ ۶	18,6	18.6	18.	6		18.6
VOL % CO						
VOL % N ₂						
		Vel % H ₂ = (100% - %	co ₂ .%o ₂ .	% CO)		

	P	RELIMINARY SURVE (Stack G	Y DATA SHE	ET NO. 1
BASE	ARIO	BLDG	. D	
OFFUTT.		SAMPLING TEAM		
SNOV SOURCE TYPE AND MAK	87			
SILVER.	RELOVER	y INCINER	11105	
SILVEIZ, SOURCE NUMBER # / RELATED CAPACITY		21.5-4.	5 = 17	, '' Inches
RELATED CAPACITY			TYPE FUEL GAS	
GCC LE ZYA		NSIDE DIAMETER	1 9/13	
4.5		NUMBER OF POINTS/T	RAVERSE	Inches
		OCATION OF SAMPLING		
POINT	PERCENT O		LL	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)
1				5.0
2				6.3
3				7 · 8
Ц				10.0
5				16. D
6				18.2
7				19.7
8				21.0
				21.0
:				

OEHL FORM 15

		VEY DATA SHEET NO. 2 Temperature Traverse)	
BASE C.F.F.U.TT		B NCY 88	
INCINERITOR	# /		
INSIDE STACK DIAMETER			Inches
STATION PRESSURE 28.974			
STACK STATIC PRESSURE - 0.16			In Hg
SAMPLING TEAM			In H20
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	eyelone The X	STACK TEMPERATURE (OF)
1	,05	8	490
2	.05	7	490
3	. 06	5	500
4	.09	4	505
5-	./0	0	505
6	.10	2	500
7	.09	2	500
8	.05	3	495
	DP: 0.074		
	Ts: 498		
	FR = 21		
	NOZZLE DI4 = 0.457		
	AVERAGE		

NOZZLE CALIBRATION DATA FORM

Date 8 NOr	88	Calib	rated by _	GHIZRISON	4
Nozzle identification number	D ₁ , mm (fn.)	ozzle Diam D ₂ , mm (in.)	neter ^a D ₃ , mm (in.)	ΔD, b mm (in.)	D _{avg} c
3	0.376	0,377	0.375	0.002	0,376
		l			<u> </u>

where:

aD_{1,2,3}, = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b $\Delta D = \text{maximum difference between any two diameters, mm (in.),} \Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

D_{avg} = average of D_1 , D_2 , and D_3 .

Quality Assurance Handbook M5-2.6

APPENDIX D
Incinerator 2 Field Data

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Stack ID: #2 Stack diameter at ports: 1.38 (ft)

Distance A (ft) (duct diameters) > 2

Recommended number of traverse points as determined by distance A: 8

Distance B (ft) (duct diameters) > 7

Recommended number of traverse points as determined by distance B: 12

Number of traverse points used: 16

STACK TRAVERSE POINT LOCATIONS

STACK DIAMETERS(inches)

Stack #1 = 17.0

Stack #2 = 16.5

Stack #3 = 13.4

Stack #4 = 18.3

		STA	CK #	
	מ	STANCE FROM	WALL(inches	;)
POINT NUMBER	#1	#2	#3	# 4
1	0.5	0.5	0.5	0.6
2	1.7	1.7	1.4	1.9
3	3.3	3.2	2.6	3.5
4	5.5	5.3	4.3	5.9
5	11.5	11.2	9.1	12.4
6	13.7	13.3	10.8	14.8
7	15.2	14.8	12.0	16.4
8	16.5	16.0	12.9	17.7

IMCIN	2#			PART	PARTICULATE SA	SAMPLING DATA	SHEET				
RUN NUMBER		SCHEMA	SCHEMATIC OF STACK CROSS SECTION	CROSS SE	CTION	EQUATIONS			AMBIE	AMBIENT TEMP	
_		16110	CHARGE WIT	Chy,	, , ,					7	3
DATE		100	Pour I Killy!	<u>{</u>	د.	"R = "F + 46.)	-		STATI	STATION PRESS	
* 7/V	<u>ر</u> د		くご もんこない					_	-	シペンシ	7
PLANT SIL. KA.	1212		# C X			- 11	0.00	5 . SH	HEATE	HEATER BOX TEMP	
50.78	Q		•		ŗ	E): 17 17 C	W. W. W. Jak St. Ash C. Ha			- !	7
BASE	1	7.	A	ASS 1.0	ر د . د . د . د . د . د . د . د . د . د .	יישייליין לייני	To the state of th			PROBE HEATER SETTING	: 7
	9 :071	<u> </u>	(5°	56.303 0 - 17 6	ויישאון ולסין	Reserve 1011. F	1	1000	S - 1 30000	
1 5 F		-	42	ع ر	2 67 - 7	17,404 to 14.00	luch gired	>	T AGE	FROID	
METER BOX MINERS	1 d	(x		- ج	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	state P 12	-,12		7 2 2 2 2	4 O	11
ファイング	#					0 1.7		11000		. 500	5
Qw/Qn:) 				25th 25	Stand and their of Ind Indiana, 5, 100	לפוג לי נפעל	đ		
	:					-	,				
သ		- (Hand frue	1560		ראץ <u>ה</u>	LAY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	STATIC STATIC	STACK TEMP	M.S	VELOCITY	ORIFICE	GAS	GAS METER	4 TEMP	SAMPLE	IMPINGER
POINT	TIME (min)	PAPESSUARE (vari189)	(0F)	(Ts)	HEAD (Vp)	DIFF.	SAMPLE	O A C		BOX TEMP	OUTLET TEME
-	\\	7475	(#11 F	(E)	(20 ft)	+	+	(OF)	(o.F.)
7 4/	7	# C_	3.7		917	7,47	2 12/17	27	200	776	/1/5
14	10	0.00-	900	+	1000	4.0		7/2	200	1,77	7/1/2
7.7	2/	0.01-	4,47		0000 0000	3.07		2.0	700	-624	3-1-1
3	2)	-150	159.9		061.	1/8		po	44	24.	5.5
g	24	2/81-	-89		D h)'	4.72		79	: 15	23%	75
7	27	Q'81-	967		7151	4,85		٤٦	35	240	25
٥	55	-11.0	767		146	4.69	497.456	22	57	246	Ø
	36										
3	3	-7.¢	585		43	1,7		99	2/5	7416	4/5
1	h	2,4-	567		70	6.13		3	5/.	245	777
3	%	714.0	674		9	3,92		73	5.7	7,7	3
7	77	-17.0	6.10		717	4.[2		7,7	29	72.7	5.5
ğ	e		683		(1)	4,45		67	82	234	5.3
3	2	2,71-	68		,(3	7,7		17	60	225	5.5
7	77	-17.5	7777		13	7,47		67	9.2	135	55
×	2%	-11.6	683		17	7.09	277,008	46	7	228	55
	, ,	1									
	153	842-51	2H = 1	45	PST5 - 16	2976	[4 P]	51,192			
										57.7 1.48	1/2/22/10/1
AV OEHL FORM	18									1	

	AIR POL	LUTI	ON PARTICU	LATE ANA	LYTICA	L DATA	
BASE		DATE				RUN NUMBER	
OFFUTT			YNOV	88		1	
BUILDING NUMBER BL. DG D				SILVE	R RF	WARRY IN	CINFACTION
1.	SLOG D PARTICULATES						
	ITEM		FINAL W		INIT	IAL WEIGHT (श्रुवा)	WEIGHT PARTICLES
FILTER NUMBER			\$.30	<i>\$57</i>	0	2756	Ø. Ø3Ø1
ACETONE WASHING Hall Filter)	S (Probe, Front		104.2	717	184	. 2558	Ø. \$159
BACK HALF (II need	ded)						
			Total We	right of Partic	culates Coil	ected	Ø, Ú46Ø am
li.			WAT	ER	T		
	ITEM	<u></u>	FINAL WI		INIT	IAL WEIGHT	WEIGHT WATER (@m)
IMPINGER 1 (H20)			214.	0	2	00	14
IMPINGER 2 (H20)			200)	2	00	0
IMPINGER 3 (Dry)			5.8)		0	5.0
IMPINGER 4 (SIIIca G	1+f)		218	.9	2	.OO, O	18.9
			Total We	ight of Water	Callected		37.9 m
III.			GASES			ſ	
ITEM	ANALYSIS 1		ANALYSIS 2	ANAL	. YSIS 3	ANALYSIS 4	AVERAGE
√01 % CO ₂	3.2		3.0	.3.	2		3.1
∨ ⊃L ≒ O 2	17.0	/	7.0	17.	0		17.0
VOL ~ CO							
VOL % N2							
		Val %	N ₂ = (100% - % (% CO)		

	AMBIENT TEMP	3	STATION PRESS	78, 3, 6 mm	HEATER BOX TEMP	7 5 7 o.k.	PROBE HEATER SETTING		TAME LENGTH	U1 .	NOZZLE ARTICLE DIAMONE	li bs	0.084	DRY GAS FRACTION (Fd)		-	OUT BOX	(^{0}R) (^{0}F) (^{0}F) (^{0}F)	57 127 85	58 237 65	_	27 842 27	177 1762 1.7	62 255 66	62 250 6.3	759 8,76 6.2	- 13 - 143		73 63	170	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	112 744 57	12 745 54	1/5 7/7 97	25 842 37		77729	-76.17.	
ARTICULATE SAMPLING DATA SHEET	CTION	€ 2		H E S130-Fd-Cp-A 2 Is Vo	1 · C		12. 12. 12. 12. 15. 1 18 1 Th	To the William To	200		P. tot yourd		122 static P		start temis 1221	ORIFICE GAS	HEAD DIFF. SAMPLE IN	(H) (cu ft)	Ø Ø		164 1,13	•110 (1.21 65)		120 1.30		114 1,72 538,773 74	89	20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(4)	75	124	150 643	17 (Tr) (75)	76 177 155 157 151		- 1 2 47 C	7 - 7	±
PARTIC	SCHEMATIC OF STACK CROSS SECTION				(V.SV.)	z «		{	7	1 0 0 x						STATE STACK TEMP	(Ts)	(0R)	-2.0 587	-2.4 598	-3,6 615	-3.4 (55)	-3.7 66	-3.6 671	-36 26	3 4 653	B	-2 6 / 164	11	+		-36 155	-3.W Cil	-3 0 (4.5	30 674		YP)	A 44	
INCUN # 2	RUN NUMBER	7	DATE	ĺ	PLANTS L. NEWS RIS/ 1.	C 500 C	BASE CELL	SAMPLE BOX NUMBER	0 136	O SOM WIND SO	NUTRO!	Ow/Om	,	Co			POINT	(B12)	- ح		a n	71 15				8 28	35	, , , , , , , , , , , , , , , , , , ,	- 6	**	71 12	5 16	20	7 24	8 28	36	7	79 4	OEHL FORM 18

	AIR POL	LUTI	ON PARTICUL	ATE ANA	LYTICAL	DATA		**************************************
BASE		DATE			T	RUN NUMBER		
OFFUTT		ι	1 NOV83			2_		
BUILDING NUMBER				SOURCE NU	EC KE	COVERY IN (114 1	RIHER
1.			PARTICU	LATES				
	ITEM		FINAL WE		INIT	IAL WEIGHT	w	EIGHT PARTICLES
FILTER NUMBER			Ø.34	61¢	0.	2827	Q	6.4183
ACETONE WASHING Hall Filter)	GS (Probe, Front		89.4		89	4087	(6.0640
BACK HALF (II nee	ded)							
			Total We	ight of Partic	ulates Coll	ecred	a	, £823
11.			WAT	ER				
	ITEM		FINAL WE		INIT	IAL WEIGHT		WEIGHT WATER (gm)
IMPINGER 1 (H20)			206	, >	2	-00		6
IMPINGER 2 (H20)			208			.00		8
IMPINGER 3 (Dry)			3.5	5	(\bigcirc		3,5
IMPINGER 4 (Silica)	Gel)		210	,0	20	00.0	A	7 10.0
			Total We	ight of Water	Collected		2	-7.5 am
111.		<u> </u>	GASES	(Dry)				
ITEM	ANALYSIS		ANALYSIS 2	ANAL	YSIS 3	ANALYSIS		AVERAGE
ναι % co ₂	2.6	,	2.4	3.	4			2.5
vol % 0₂	17.6	/	7.8	17	. P			17.7
VOL ≒ CO	·							
VCL % N ₂								
		Vel 9	i H ₂ = (100% - % (% CO)			

0 IMPINGER OUTLET 28.374 HIATER BOX TEMP PROBE HEATER SETTING DHY GAS FRACTION (Fd) カケノン 12.15 3 1,54 186 561.581 STATION PRESS AMBIENT TEMP 12.7 级 00.3 GAS METER TEMP Retection of Birth 125 ンに (OF) ĭ 587, 384 5.71.140 H = 2130-F4 Cp.A GAS SAMFLE VOLUME E:623 17815- 9.761 PARTICULATE SAMPLING DATA SHEET skin P. -12 OR = OF + 460 40.1:14 ORIFICE DIFF. PRESS. EQUATIONS In: 68.5 VELOCITY HEAD (Vp) CHEMATIC OF STACK CROSS SECTION (Ts.) STACK TEMP (OF) STATIC PRESSURE (in H20) -22 いない 141771 SAMPLING TIME PLANTSLIKECTARY BLIXE D (שוזט) 375 N SAMPLE BOX NUMBER METER BOX NUMBER OEHL FORM 18 4 NUV88 OFFUTT INCIN # NUTRCH Ow/Om TRAVERSE POINT RUN NUMBER NUMBER たなり 7 BASE ပိ

	AIR POLL	UTIC	ON PARTICUL	ATE ANA	LYTICAL	DATA		
BASE		DATE	4 NOV8	8		RUN NUMBER		
EUILDING NUMBER			·		MOER			
BUILDING NUMBER				5/LV F.	2 RIECO	URRY INC	JN.	RKHTÊR
1.			PARTICU	LATES	· · · · · · · · ·			
1	TEM		FINAL WE	IGHT	INIT	AL WEIGHT		(gm)
≓°LTER NUMBER			0.29	86	0.	28 36		O. U15\$
ACETONE WASHINGS Hall Filler)	(Probe, Front		99.6	415	99.	6272		6.0143
BACK HALF (If needs	od)							
		208.3	ulates Colle	reted	(D. 6293 em		
11.			R	r				
ľ	TEM		_	IGHT	INIT	AL WEIGHT		WEIGHT WATER
.MP(NGER 1 (H20)		3 0 208.3 200.0	1	2	00		14	
IMPINGER 2 (H20)			a	00		4		
IMPINGER 3 (Dry)			0	3				
IMPINGER 4 (SIIIca Ge	»I)		208	2.3	2	00.0		8.3
			Total Wei	ght of Water	Collected		2	29.3
111.			GASES	(Dry)		······		
ITEM	ANALYSIS 1		ANALYSIS	ANAL	. YSI S 3	ANALYSIS		AVERAGE
√ ⊃L % CO ₂	2.0		2.0	2.	./		j	2.0
voc + 0 ₂	18.2	/	18.2	18	2.1			2.0
۷٥٤ % CO								
VOL % N2								
		Vel 9	5 N ₂ = (100% - % (02. % 02.	% CO)			

	Pi	RELIMINARY SUI (Stac	RVEY DATA		
BASE		PLANT			
DATE		BLOG D			
4NOV33		0EI	HL/ECC	a Air Chudity	
SOURCE TYPE AND MAK SILV'ERY R	ECOVERY 1	NCINERATO	x #3	د) ک	
SOURCE NUMBER		INSIDE STACK DIA	METER	·	
RELATED CAPACITY		16.	TYPE F	Inches	
500 (b5/24/m		(j	eas	
DISTANCE FROM OUTSIC	DE OF NIPPLE TO II	nside diameter 75	0	Inches	
NUMBER OF TRAVERSE	<u> </u>	NUMBER OF POINT			
		8		AL OUC TOLVESCE	
	T	OCATION OF SAMPL	·· ·····	T Total Tota	
POINT	PERCENT OF DIAMETER	INSIDI	CE FROM E WALL ches)	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inches)	
				4.3	
2				5.5	
3				6.9	
4				9.1	
5				14.9	
6				17.1	
7				18.5	
8				19.7	
					-

OEHL FORM 15

		VEY DATA SHEET NO. 2 Cemperature Traverse)	
BASE		LI NOV87	
BOILER NUMBER	- 0 1 1 10 11 15 0 0 5		
INSIDE STACK DIAMETER	RRY INCINERATOR	# C	
16.5			Inches
STACK STATIC PRESSURE	.370		In Hg
	27		In H20
SAMPLING TEAM			
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	CYCHUNIC #X	STACK TEMPERATURE (OF)
	.020	1	595
2	, \$ 34		598
3	, 646		600
4	,086		606
5	,115	ϕ	625
6	,140	4	634
7	.140	4	638
8	,140	4	638
		AVG = 2°	
	0,11		
	6 H2 0 = 3		
	1 (02 = 3		
	% O ₂ -17		
	IA 1		
	MW- 79.2		
	FPS=23.0 Ts=611	0 110	
	15=611	0=,469	
	AYERAGE		

NOZZLE CALIBRATION DATA FORM

Date 4 NOV 8	<u> </u>	Calib	rated by (MRRISON	Υ
Nozzle identification number	D 1 ' (1n.)	Ozzle Diam D ₂ , mm (in.)	eter ^a D ₃ , mm (in.)	ΔD, b mm (in.)	D _{avg}
5	,50Ø	,502	.502	.002	.501
3	,377	377	. 375	.002	.376
	,				

where:

aD_{1,2,3} = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

 ΔD = maximum difference between any two diameters, mm (in.), $\Delta D \leq (0.10 \text{ mm}) \ 0.004 \text{ in.}$

D_{avq} = average of D_1 , D_2 , and D_3 .

Quality Assurance Handbook M5-2.6

APPENDIX E
Incinerator 3 Field Data

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Stack ID: #3 Stack diameter at ports: 1.12 (ft)

Distance A (ft) _____ (duct diameters) >2 _____

Recommended number of traverse points as determined by distance A: 8 _____

Distance B (ft) _____ (duct diameters) >7 _____

Recommended number of traverse points as determined by distance B: 12 _____

Number of traverse points used: 16

STACK TRAVERSE POINT LOCATIONS

STACK DIAMETERS(inches)

Stack #1 = 17.0

Stack #2 = 16.5

Stack #3 = 13.4

Stack #4 = 18.3

	 	STA	CK #	
	D	ISTANCE FROM	WALL(inches	;)
POINT NUMBER	#1	#2	#3	#4
1	0.5	0.5	0.5	0.6
2	1.7	1.7	1.4	1.9
3	3.3	3.2	2.6	3.5
4	5.5	5.3	4.3	5.9
5	11.5	11.2	9.1	12.4
6	13.7	13.3	10.8	14.8
7	15.2	14.8	12.0	16.4
ô	16.5	16.0	12.9	17.7

MEINERNICH	5 # 721			PART	ICULATE SA	PARTICULATE SAMPLING DATA	A SHEET				
RUN NUMBER		SCHEMA	SCHEMATIC OF STACK CROSS SECTION	K CROSSS	ECTION	EQUATIONS			AMBIENT	ENT TEMP	
DATE)	:			$^{\circ}$ R $\stackrel{\circ}{=}$ $^{\circ}$ F + 400	Ş		1 4 TS	STATION PRESS	त्र
-3 MC						21 50	51 50 FOCTOR -	Ta, ve.		28.746	In Hr.
BLD6	\triangle	<u>ኦ</u> ;							H S	HEATER BOX ILMP	310
BASE	7	2	رند. م			121 300d	. Ja		PROF	PROBE HEATER SETTING	
, ¦×	NUMBER	9 t				De (c. 10)	why what 15 mills	(1)	PROB	PROBE LENGIH	
i so	NUMBER		[]			で -			NOZZ	NOZZLE AREA (A)	III
₩ Q /MQ									ď	.5/6	ı) bs
Co		(T)	Brook from &	Pirn		5 th. P.	, 17	Fire Pro	2 CKW DRY ORY	DRY GAS FRACTION (F.S.	9
TRAVERSE	SAMPLING	STATIC PRESSURE	STACK TEMP	TEMP (Ts)	VELOCITY HEAD	ORIFICE DIFF.	GAS	GAS ME	GAS METER TEMP	SAMPLE	IMPINGER
NUMBER	(8117)	(in H20)	(0F)	(°R)	(Vp)	PRESS. (H)	VOLUME (au ft)	F)	(Tm) (oR) (oF)	TEMP (OF)	TEMP (OF)
1+ 1	O _J	1,1	281		450	9.57	188.270	$-\eta_{F}^{l,p}$	グ が	233	33
7	8'	-36	757		150	1.64			42	533	<i>fl</i> / _h
J 1	70	14.	ند <u>ح</u>		155	117		17/	65	22.5	4/1
P	20	-34	77.9		166	1.77		125	16	747	100
La	7,4	2,40	1,24		44	1.85	0.7.7.4.5	5,7	3,5	248	54
	32	 	177		10 4	7, 7	14 6 , r.C.a.		7	27.5	2
161	C	9, 4-	5.76		4014	1.05		<i>U29</i>	12	,,,,	
7	77	13.5	777		94/	1.59		(30)	3	26.0	25
4	(;)	-2.35	3.77		000	1.5/			22	250	24
2	16	3.50	7/1/2		160	1,76		S	55	255	200
9 7	37	13.5	2/0		1000	di.		75.	2/2	294	12,
8	26	2.5	643		.155	1,49	825,135	66	32	25.7	55
1	11					•		+	-		
4.7	5	512	4H=1,5/	1	555-12	01 957	16=3	165K	7		
									-		
OEHL FORM	18										

	AIR POLL	UTION PARTICUL	ATE ANAL	YTICAL	DATA		
BASE	ļ	PATE			RUN NUMBER		
CFFUT	T	9 Nov					
BUILDING NUMBER	D		SOURCE NUME		# 3		
1.		PARTICU				Ţ	
	ITEM	FINAL WE		INITI	AL WEIGHT (都)	WEIG	(en)
F LTER NUMBER		0.28	92	Ø. 2.	838	A.	0.054
ACETONE WASHING Hall Filter)	S (Probe, Front	92.18	72¢	92.	1717	d.	4143
BACK HALF (If noe							
		Total We	i ght of Particul	ates Coile	cred	Φ.	4157 am
н.		WAT	ER			_ 	
	ITEM	FINAL WE		INITI	AL WEIGHT (gm)	w	EIGHT WATER (gm)
IMPINGER 1 (H20)		.262.	Ø.	20.	t, Ø		2.7
IMPINGER 2 (H20)		214,	Ø	20	4. Y	/	4.4
IMPINGER 3 (DA)		1, 4	4		Ć .		1 , Ø
IMPINGER 4 (SIIIca	G•1)	214,2	2_	200	5. Ø	<i>j</i>	0,2
		<u>1</u>	eight of Water C	ollected		2	7.2 em
III.	ANALYSIS	GASES ANALYSIS 2	(Dry) ANALY		ANALYSIS		AVERAGE
V3L ₹ C0 ₂	2.1	2.1	2.4	<u> </u>			2-1
VC= 7 U2	17.3	17.3	17.4				17.3
VOL + CD							
VOL T N2							
		Vol % N2 = (100% - %	CO2 - % O2 - %	(CO)			

MUNI	SHTK #	64	Α٩	PARTICULATE SA	SAMPLING DATA	A SHEET				
RUN NUMBER			SCHEMATIC OF STACK CROSS SECTION		317072 11102			10111		
2		7		3 25 0 10 4	EQUATIONS			AMB	AMBIENT TEMP	
DATE	000	4			"R = "F + 460	O,		STAT	STATION PRESS	30
7 100	1VOV 3 3					5130-Fd-Cp.A] 2			281766	
PLANT SLDG					=======================================	. [00	с. Д.	H+ AT	HEATER BOX TEMP	
BASE A) PC PC.	1	T-	3.00		P.44 90	÷.		PROB	PROBE HEATER SETTING	40 40
SAMPLE BOX NUMBER	/ / UMBER				Dro les. 6	1 15 Jak	4-22t	0	11 11 11 11 11 11 11 11 11 11 11 11 11	
RAC		_J 	1		7.74		· -		The state of the s	
NOTECH BOX NUMBER	MBER T				7121C	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		NOZZ	NOZZLE AREA (A) 1)	D. ch-
								Ĵ		sq ft
ರೆ					Stark	1000 F	ı	DRY	C', 5 7 DRY GAS FRACTION (Fd)	0
TRAVERSE	SAMPLING	STATIC	STACK TEMP	VELOCITY	ORIFICE	GAS	GAS METER	TER TEMP	SAMPLE	0 10 71
POLY POLY BER	TIME (min)	PRESSURE (in H20)	(oF) (Ts) (oR)	HE AD (Vp)	OIFF. PRESS.	SAMPLE VOLUME		AVG OUT	BOX	OUTLET
	C	6000	7 62	519.	(II) (C)	(m m) 2/8		(A) (OF)	(°F)	(OF)
7	d	Φ'/2-	(011)	\$40°	1.59	}	600	57	1727	
77	× de	-75	×1,3	,150	1,65%		77	5.8	242	-2/2
27	4	5,7-	165	9,91	1777		en	28	862	71
2	06	-11.5	255	1,56	4.65		77	13	8 57	90
7	THC.	-3.4	799	150	400		9	7/1/	15%	48
8	38	23.8	1.20	150	7421	21874		47	22/21	43
	3,7	-		<i>,</i>					+ + + + + + + + + + + + + + + + + + + +	
13	C	-2.5	12%	J.K.	493		 - ;		1,1,1	-
2	75	<u>۱</u> ۲۰	10g	001	51.7		25	<i>y</i>	2776	7
7,	200	-2.5	6/17	130	65/		67	61	542	5,5
2 V	, 10	111	143	136	1,80		623	[2]	M	85
	35	300	22		1,78		ÉX	(C)	245	77
7	7.4	-2.6	2/4	150	1627		6.3	100	25,7	2
8	87	9/8>	\$27 	(43	1.64	862,289	76	6.3	7 67	1
	ı						-			
47-14	3 1,= 6	7 179:15	12 1813-17	\$1.00 B	₹70A	36.40	1.5			
-										
DEHL FORM	BE .									

	AIR POLLL	TION PARTICUL	ATE ANA	LYTICAL	DATA			
C FRUTT	DA	9 NOUSS			A S S S S S S S S S S S S S S S S S S S			
BUILDING NUMBER			SOURCE NU	MBER IN #	3			
1.		PARTICU	LATES					
1	TEM	FINAL WE	(IGHT	INIT	IAL WEIGHT	WEIGHT PARTICLES		
FILTER NUMBER		\$,29	88	0.	2859	6.6129		
ACETONE WASHINGS	(Probe, Front	98.72	99	98.	7264	ψ.\$\$95		
BACK HALF (II needs	od)							
		Total Wel	ght of Partic	ulates Coll	ec ted	0.0224 am		
11.		WATE						
1	TEM	FINAL WE	IGHT	INIT	IAL WEIGHT	WEIGHT WATER (gm)		
IMPINGER 1 (H20)		20,2	N	2	Øφ	2-0		
IMPINGER 2 (H20)		208	1	Z	ØØ	8,0		
IMPINGER 3 (Dry)		HL 11	nl	,	D	1.0		
IMPINGER 4 (Stiles O	9()	210.	6	2	200	10.6		
			ght of Water	Collected		21.6 am		
III.	ANALYSIS 1	GASES ANALYSIS 2	T	. YSIS 3	ANALYSIS	AVERAGE		
VOL % CO ₂	2-6	2.4	2,	.4		2.5		
VOL % 02	17,4	17.4	17.	6		17.5		
VOL -; CO								
VOL ", N ₂								
	,	/ol % N ₂ = (100% - % (. % O ₂ .	% CO)				

X214X3NIJNI	HER #	-3	PA	PARTICULATE SAI	SAMPLING DATA SHEET	SHEET				
RUN NUMBER		SCHEMA	SCHEMATIC OF STACK CROSS SECTION	S SECTION	EQUATIONS			AMBIE	AMBIENT TEMP	
M		•			30 - d0	-		_	3.6	<u>15</u>
1	i	> <			0 + - 1 K	-		STATIC	N PRESS	
10N 6	00 - -				H #	5130-Fd-Cp-A			12/01	In HE
Ž	<u>ر</u>		<i>{</i>				. s.	HEATE	HEATER BOX TEMP	
			Ži.		7/11 900	7		PROBE	PROBE HEATER SETTING	-io
104-10	/ /				A. 1. 1. 5	C P 15, - 14	C. Careed			
SAMPLE BOX NUMBER	א ביינו		<u> </u>		77 196	Det le	* 1	PROBE	PROBE LENGTH	
BOX NU	MBER 1/							NOZZI	2	ν. ΄
04/0m	<i>H</i>							ď	316	ll ps
		-)	ナス・こ	
လ		G			stret at	11296		DRY G	DRY GAS FRACTION (Fd)	q)
TRAVERSE	SAMPLING	STATE	STACK TEMP	VELOCITY	ORIFICE	GAS	GAS METER TEMP	RTEMP	SAMPLE	IMPINGER
POINT	TIME (min)	PRESSURE AM H D) /	(oF) (Ts)	HEAD (Vp)	DIFF.	SAMPLE	N AVG	 	BOX	OUTLET
4	2	-3.16	227	\$7.W	1/1/20 1/2	C/27 4165	(0F) (0K)	(10)	140°	
7	• (-4.0	608	262	(0)	V.	72	3	775	48
3	ķ	2.5-	3019	\$71'	1.37		63	(2)	278	-18
91	12	-5.5	6/3	135	1.52		24	13	223	J_{ab}
1	76	0.0	(2)	1823	1.50		66	6.7	777	25
2	200	3.0	42%	27.7	1.20		66	1,00	12/	75
2	26	9 -) -	250	200	100	517 9X3	55	大 ス	1537	44
7		*			16	712 %00		1		
*					1					
7 6) *	0,7/-		, 055	0.69		65	4.2	255	5.5
24	7	~ □ `	664	(6)	11.6		65	179	753	24
77	9	1		1,70	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		5)	1/1	151	2,6
	16	2, 37	623	1,7%	カル		ide	12/	126	23
9	20	5.9-	622	1. The second se	164		200	63	255	35
7	24	5.0/-	do	, /W.	1011		77	1/0	755	56
8	28		613	ን/ተ	1.60	17.2.868	2%	79	255	25
	ļ									
7-104	7:1	173	147 + 155	11. C	1677	2/00	RC 4 1	1		
	7		3			2	7			
- 1	- 1									
OEML TOTAL	80 -					N-	\			

	AIR POLLU	TION PARTICUI	ATE ANA	LYTICAL	DATA	
BASE (FFUTT	l	9 NO18	8		S S	
BUILDING NUMBER BLDGD			SOURCE NU	MBER / N #	3	
1.		PARTIC	ILATES			
j.	TEM	FINAL W		INIT	AL WEIGHT (g/m)	WEIGHT PARTICLES (Apr.)
FILTER NUMBER		d. 29	52	0.	2836	6.0116
ACETONE WASHINGS Houl Filter)	(Probe, Front	99.5	655	99	558¢	0,0075
BACK HALF (If neede	d)					
		Total Wa	eight of Partic	culates Colle	ected	Ó Ý191 am
11.		WAT	ER	,		
1'	TEM	FINAL W		1NITI	AL WEIGHT	WEIGHT WATER (4m)
IMPINGER 1 (H20)		206	m'	2	00	6-0
IMPINGER 2 (H20)		210	n!	20	20	10.0
IMPINGER 3 (Dry)		AH / ,	n!		0	1-0
IMPINGER 4 (SIIIca O	nl)	210.	4 02	20) <u>()</u>	10.4
-		Total W	O eight of Water	Collected	:	27, 4 am
10.		GASE!		ı vete	ANAL VEIS	
ITEM	ANALYSIS	ANALYSIS 2	ANA	LYSIS 3	ANALYSIS	AVERAGE
vol≒co₂	1.3	1.2	1.	-2		1.2
√∩∟ % O ₂	17,8	17.9	18	7- W		17.9
V0L % C0						
VOL ≒ N ₂						
	,	/ol % N2 = (100% - %	CO2 - % O2 -	- % CO)		

	PI	RELIMINARY SURV (Stack	EY DATA Geometry)		
BASE		PLANT			·
OFFUTT		BLDG 1	······································		
9 NOV 3	5	6E H2/1=0	Q Hir		
SOURCE TYPE AND MAN	CERRICY INC	INERHER			
SOURCE NUMBER		INSIDE STACK DIAME	TER		
# 3	· · · · · · · · · · · · · · · · · · ·	13.38	T	Inches	
~ 600	1/21/hr		TYPEF	oer 1/20	
DISTANCE FROM OUTSIE	DE OF NIPPLE TO I	NSIDE DIAMETER		Inches	
NUMBER OF TRAVERSE	S	NUMBER OF POINTS			
	L	CATION OF SAMPLING		LONG TRAVERSE	
POINT	PERCENT OF DIAMETER		ALL	TOTAL DISTANCE FROM OUTSIDE OF NIPPLE TO SAMPLING POINT (Inchea)	
1				5.4	
7			!	5.9	
3				7.1	
4				8.8	
5				13-6	
[a				15.3	
7				16.5	
Si				i7.4	
j		l l			

		VEY DATA SHEET NO. 2 Temperature Traverse)	
BASE CFRUTT		DATE	
BOILER NUMBER		11000	
1NCIN. # 3			
INSIDE STACK DIAMETER			Inches
STATION PRESSURE			
28,706 STACK STATIC PRESSURE			In Hg
_,2		*	In H20
SAMPLING TEAM OEHL	1ECQ		
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	CYCHONC	STACK TEMPERATURE (0F)
1	.094		58\$
7	.120	5	645
3	,14¢	φ	617
4	.16¢	d d	638
5	150	, t	6-25
6	.155	4	615
7	150	4	618
8	,130	6	619
6 ,			
7.1			
	AVERAGE		

OTHL FORM 16

NOZZLE CALIBRATION DATA FORM

aD_{1,2,3} = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b ΔD = maximum difference between any two diameters, mm (in.), $\Delta D \leq (0.10 \text{ mm}) \ 0.004 \text{ in.}$

D_{avq} = average of D_1 , D_2 , and D_3 .

Quality Assurance Handbook M5-2.6

(This page left blank)

APPENDIX F
Incinerator 4 Field Data

(This page left blank)

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Stack ID: #4 Stack diameter at ports: 1.52 (ft)

Distance A (ft) (duct diameters) >2

Recommended number of traverse points as determined by distance A: 8

Distance B (ft) (duct diameters) > 7

Recommended number of traverse points as determined by distance B: 12

Number of traverse points used: 16

STACK TRAVERSE POINT LOCATIONS

STACK DIAMETERS(inches)

Stack #1 = 17.0

8 + 2 = 16.5

Stack #3 = 13.4

Stack #4 = 18.3

		STA	CK #	
	Γ	SISTANCE FROM	WALL(inches)	
POINT NUMBER	#1	#2	#3	# 4
1	0.5	0.5	0.5	0.6
2	1.7	1.7	1.4	1.9
3	3.3	3.2	2.6	3.5
4	5.5	5.3	4.3	5.9
5	11.5	11.2	9.1	12.4
6	13.7	13.3	10.8	14.8
7	15.2	14.8	12.0	16.4
8	16.5	16.0	12.9	17.7

PLANT BASE () 1-1-0/1 BASE () 1-1-0/1 SAMPLE BOX NUMBER NUMBER NUMBER (intu) 13.5 14.5	PARTICULATE SAMPLING DATA SHEET		$\frac{1}{8} \frac{1}{100} \frac{1}{1$	H = [5130-F@4.D:A] 2 TA, VI.	Co Tr	PROBE HE	But a struct and of the	A2-1.5K	POSITION OF OUT SIN HE	0	128'2 d,	Fruit tune 1020	STACK TEMP VELOCITY ORIFICE	(oF) (Ts) HEAD DIFF. SAMPLE IN AV. OUT BOX (oF) (vR) (VP) CHI (VP) (VP) (VP) (VP) (VP) (VP) (VP) (VP)	49 6 50 035 644 588, 335 50 49 -	2 4 50 g	6.7.0 D. 6.7.	لز	75 75 75	1.5 (3) 1.66 1.95	(2) LEIT , OGG 6.99 604. L'UCK [20)	Ň	75 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7,7	2.5 (182) 10616 01616 (6) 672	(0.7) (0.7) (0.7)	3.4 689 .495 1.61 621.185 7.2 37 244 56	\	15-618 111-109 11555 9.624 Vel 32,850	
The constraint of the constrai		SCHEMATIC OF STACE				50]						CAT TO (OF)	+	3	2	\top	2.5	151	17 11	Ň	7,7	1000	19 1,7	-2.5 682	17 15	3.4	\	638 211	

3.5

	AIR POL	LUTIO	ON PARTICUI	LATE ANA	LYTICAL	DATA		
BASE		DATE			$ \top$	RUN NUMBER		
CFFUTT		,	NOYS	5	ļ	1		
BUILDING NUMBER				SOURCE NU	MBER			
13 LPG				1/19/11	v#	+		
1.			PARTIC	JLATES	,			
	ITEM		FINAL W		INIT	IAL WEIGHT (gm)	*	VEIGHT PARTICLES
FILTER NUMBER			Ø.32	60	ψ.	2946		4.4354
ACETONE WASHING Hall Filter)	GS (Probe, Front		98.28	14	Ì	2.554	,	Ø \$26¢
BACK HALF (If nee	odod)							
			Total We	oight of Partic	ulates Colle	rcted		t. 6614 am
11.			WAT	ER	1			
	ITEM		FINAL V		INIT	AL WEIGHT		WEIGHT WATER
MPINGER 1 (H20)			211.4	ń	20	20.0		11.0
.WPINGER 2 (H20)			200	c. Ø	20	20.6		6.0
IMPINGER 3 (Dry)			0.	5		Ø.		<u>0</u> 5
:MPINGER 4 (SIIIca	Gel)		208	8.¢.	20	00,0	<u> </u>	8,\$
				ight of Water	Callected			25.5 am
111.		Γ	GASES			<u> </u>		
ITEM	ANALYSIS 1		ANALYSIS 2	ANAL	. YSIS 3 	ANALYSIS 4		AVERAGE
√)(3 CO ₂	3.4		3.4	3	1.3			3.4
70L + 02	15.6		15.6	15	6.6			3.4 15.6
/ E N CC					,			
VOL N N2								
		Val %	N ₂ = (100% - %	co ₂ . % o ₂ .	% CO)			

INCINIERINFOR) PCX # 1/			PART	TE	SAMPLING DATA	SHEET				
RUN NUMBER	1	SCHEMAT	SCHEMATIC OF STACK CROSS SECTION	K CROSS S	ECTION	EQUATIONS			AMBIE	AMBIENT TEMP	
	!					OR = OF + 460	2		17.4.7.2	()(,	do
DATE 7	>- ^/						<u></u>			1655	3
- IN A De	:					Н в 15130	5130-Fd-CP-5	ج 1-	HEATER	F. BOX TEMP	
131 15	2		4				, ! -, !				40
18 A S.E.	, , ,		\			1) < (80. to chick	hick jeen of		PROBE	PROBE HEATER SETTING	9 7
RAMPLE BOX NUMBER	N. S.					7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ر المراد الم) 	PROBE	PROBE LENGTH	
R 10C						Part cyco X)		<i>B</i>	S
METER BOX NU	NUMBER					•			NOZZI	NOZZLE AREA (A) D. A	4
として	KC 14								c _D	4//	sq 11
						M. A.	ì	Yur,		125'	
လ						OPPORT !	MIS KUN	1226		DRY GAS FRACTION (Fd)	C)
TRAVERSE	SAMPLING	STATIC	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS METER	ERTEMP	SAMPLE	IMPINGER
POINT	FIME (min)	HRESSURE (in H20)	(oF)	(Ts) (ºR)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (G) (I)	N (96)	Avg OUT (Tin) (OE)	80.X 1 E M P (9F)	OUTLET TEMP (OF)
	0	-3 B	52th		,000	CP 74	676.692	-	+	572	d.8
2	45	-3 D	7 1 1 5		57/17	97.0		5,0	55	5/6	45
3	9.0	- ب د -	43.3		500	6.77		- 35,	55	736	4.7
3-1	200	35	500		, WX .	1,0,0		3.9	14.	767	7
	(8/8)	-2 4	1 1/2		989	F. C.		NE S	36	1.71	47
2/	22.16	7 70	125		971/1	197		29	25	200	25
В	31.5	4:5-	212		540	107	637154	54	v.	757	75
		-			-				-		.
	0	-45	53		030	6,37		6.5	5.7	452	75
7	4.5	-(. it	577		5770	0.76		5	5.7	226	15
ć	2.0	65	77.7		1680	0,74		10	2	27.6	S. S
3 V	13.5	16,5	276			20,00		2,1	25	726	1.5
c	12.5.	5,5	583		675	6.57		77	2	229	5%
10	3/2	-6.5	XXX,		52.00	28.70	47/2 151	79	58	377.	56
•	76	9)	1911-11-0	3	7		
1	38	587 JH	8.4	£ J	3555 - 8.	8699	707	34.6	13 17		1, 1, 1, 1
1,,									-		
MRC F JAM	, , at										

	AIR POLL	UTION PART	ICULATE AN	ALYTICA	L DATA	
BASE	T	DATE	·		RUN NUMBER	
OFFUT	T	7 NO	188		2	
BUILDING NUMBER			SOURCE N	UMBER	, , , , , , , , , , , , , , , , , , , 	
BLDG	D		//	CINH	4	
1.		PAR	TICULATES			***
	ITEM	FINA	L WEIGHT	INIT	'IAL WEIGHT (401)	WEIGHT PARTICLES
FILTER NUMBER		Ø.5	28\$	J.	2857	Ø.2423
ACETONE WASHING Half Filter)	SS (Probe, Front	98,	4794		4162	0.0632
BACK HALF (II nee	ded)		,			
		Ton	al Weight of Partl	culates Coll	ected	\$3055 am
н.			WATER			
	ITEM	FINA	L WEIGHT	INIT	IAL WEIGHT	WEIGHT WATER (gm)
IMPINGER 1 (H20)		RO	6.4°	20	to c	6.9
IMPINGER 2 (H20)		20.	5. t	20	50.O	5.4
IMPINGER 3 (Dry)			3.6		Ø	.3.8
MPINGER 4 (Silice)	Gel)	20	08-8 5-1	20	t.o. o	8.8
		Total	l Weight of Water	Collected		22.8 am
III.			SES (Dry)			
ITEM	ANALYSIS	ANALYSIS 2	ANAI	YSIS 3	ANALYSIS	AVERAGE
∨01 % CO ₂	2.4	2.4	2.	2		2.4
vol * 0 ₂	15.2	15.2		.2		15.2
√⊃£ % CO						
VOL % N ₂						
		Vel % N ₂ = (100%	· % CO ₂ · % O ₂ ·	% CO)		

INCINERITOR	21) TOR STEE	17=		PAR	TICULATE SA	PARTICULATE SAMPLING DATA SHEET	SHEET				
RUN NUMBER	i	-	SCHEMATIC OF STACK CROSS SECTION	CK CROSS !	ECTION	EQUATIONS			AMBIE	AMBIENT TEMP	
Y						$^{\circ}R = ^{\circ}F + 460$	၁			50	do
DATE	., ∞						<u>-</u>		STATION	STATION PRESS	:
PLANT)		(H H		· · · · · · · · · · · · · · · · · · ·	TEATER.	HEATER BOX TEMP	an Hg
10-DC- BASE	CD		\bigcirc	<u>.</u>		Proleuk che 6	Release the book is an ing your		PROBE	PROBE HEATER SETTING	. F.
01-5-17	UTT		ָב [<u>.</u>		Post 10-keh	Post genetalent of 2 Southy	7			
SAMPLE BOX N.	TO EBBER								PROBE	PROBE LENGTH HH	
METER BOX NUMBER	UMBER THE LA			Y					NOZZE	LE AREA (A) . O	# T
Qw/Qm	7								ď	277	sq 11
တ						SPAT	61421		DRY G	DRY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	STATIC	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS METER TEMP	ERTEMP	SAMPLE	IMPINGER
POINT NUMBER	TIME (min)	PRESSURE (10 H20)	(9F)	(Ts) (°R)	HEAD (Vp)	PRESS.	SAMPLE VOLUME	OVY (Tm)	6 0UT	BOX TEMP	OUTLET TEMP
ر خ	5	23.00	527		\p\p'\	Ø.49	551,759	-	4	22.5	44
2	4.5	-3.5	\sim 1		480	6.91		17	65	218	54
77	74	23.5	538		080	6,20		3	5%	200	500
2	18.0	וי ד	456		298,	1,26		62	44	774	120
ø	22.5	. 1	438		100	1.30		79	13	224	52
70	21.5	1.5.0	2477		99	135	47/11	63	6.6	228	75
5	35	3 7			44	1 1		/ A	g g	77	7
9	o	-3 @	9652		1×10.	442		63	929	\$62	Xħ
7	4.5	-2.4	1007		0.35	0.5%		62	99	724	75/1
13	12.5	87-	12,7		900	167		622	99	127	42
5	look	0.4-	475		4.80	0/1		65	19	236	50
3	27.48	277	427		3 × 3			65	1/1	22.8	718
8		-4,6	177		0.80	11.11	075.889	65	33	536	45
1		1//		6		1,00		,	,		
1 = 1 = 1 = 1	1,0	455	11=48	42	1.1515 -	2000	Voc	- 5D.	265		
OEHL FORM	7, 18								-		

... **r**

(C) F 2 14 404

	AIR POL	LUTION PARTICU	LATE ANA	LYTICA	L DATA	
C.FFUTT		7 NOV 38			RUN NUMBER	
BUILDING NUMBER		7,110	SOURCE NU	MBER		
E4-D6-	D			CINI. 7	44	
I.		PARTIC				т — — — — — — — — — — — — — — — — — — —
	ITEM	FINAL W		INIT	IAL WEIGHT (gm)	WEIGHT PARTICLES (gm)
FILTER NUMBER		0.29	196	Ø.	2846	C, C15\$
ACETONE WASHIN Hall Filter)	GS (Probe, Front	103.1	278	103	3, 1181	64097
BACK HALF (If nee	e død)					
		Total We	sight of Partic	culates Call	ec ted	6.0247 em
11.		TAW	ER			
	ITEM	FINAL WI		INIT	IAL WEIGHT	WEIGHT WATER (gm)
IMPINGER 1 (H20)		208), Ø	21	90, Ø	8.0
IMPINGER 2 (H20)		204.	(d)	A	00. Ø	4.6
IMPINGER 3 (Dry)		D . 5			Ø	\$5
IMPINGER 4 (SIIIca	Gel)	208	΄, ψ	Ze	30	8.¢
	그리고 말하고 있는 생활이 있었다.	Total We	ight of Water	Collected		20,5 am
101.		GASES	(Dry)		,	
ITEM	ANALYSIS 1	ANALYSIS 2	ANAL	. YSIS 3	ANALYSIS	AVERAGE
VO- 7 CO2	1.6	1.6	1,	6		1.6
vol . 0 ₂	16.4	16.4	16.	.3		1.6
V⊙L ≒ CO						
VOL % N2						
		Vel % N2 = (100% - % (co ₂ . % o ₂ .	% CO)		

	PF	RELIMINARY SURVI (Stack (EY DATA S Geometry)	SHEET NO. 1
BASE		PLANT		
OFFUTT		BL-DG	ט	
SOURCE TYPE AND MAK	78			
SOURCE TYPE AND MAK	E •Oc. 115. a . l . l	INICIALERIAIT	ج.	
SILVER RIE	correy 1	INSIDE STACK DIAME	TER	
#4		27-8.75 = 1	8.25	Inches
RELATED CAPACITY SOUTH	TER 24 /N	NSIDE DIAMETER	9.3	LS
NUMBER OF TRAVERSES	-	NOTICE BIAMETER		Inches
NUMBER OF TRAVERSE	5	NUMBER OF POINTS/	RAVERSE	
<u></u>		CATION OF SAMPLING	POINTS AL	ONG TRAVERSE
				TOTAL DISTANCE FROM OUTSIDE
POINT	PERCENT OF DIAMETER	, meter w.	ALL	OF NIPPLE TO SAMPLING POINT (Inches)
<u> </u>				9.3
2				10:7
3				12.3
4				14.6
5				21.1
6				23,5
7				25.
8				26.4

		VEY DATA SHEET NO. 2 Temperature Traverse)	
OFFUTT		7~0V38	
BOILES NUMBER	ERY INCINITATO		
INSUE STACK DIAMETER			Inches
STATION PRESSURE	18.251		In Hg
STAUK STATIC PRESSURE	28.25 -,18		In H20
SAMPLING TEAM			
TRAVERSE POINT NUMBER	VELOCITY HEAD, Vp IN H20	CYCLENIC TO C	STACK TEMPERATURE (0F)
	\$20°	<u></u>	48/2
2	,035	<u>t</u>	49¢
<u>_</u>	.745	<u>v</u>	51¢
4	, \$5Φ	ϕ	517
5	,065	Ø	55 o
is .	, ₀ 7¢	ϕ	561
7	.07\$	\$	567
8	1465	Φ	577
			FPS: 1517
			T = 532
			ions con
			G 529
		 	
	AVERAGE	1	

NOZZLE CALIBRATION DATA FORM

Date 7 N/ 3		Calib	rated by <u>G</u>	MRRISON	
Nozzle identification number	D ₁ , mm (in.)	ozzle Diam D ₂ , mm (in.)	eter ^a D ₃ , mun (in.)	ΔD, b mm (in.)	D C avg
3	.375	.317	,.377	. U4 Z	1376

where:

aD_{1,2,3}, = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b $\Delta D = \text{maximum difference between any two diameters, mm (in.),} \Delta D \leq (0.10 \text{ mm}) 0.004 \text{ in.}$

D_{avg} = average of D_1 , D_2 , and D_3 .

Quality Assurance Handbook M5-2.6

(This page left blank)

APPENDIX G Calibration Data

(This page left blank)

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Date 12 Jul 88

Meter box number 2010 NUSECH #1

Barometric pressure, P_b = 29.119 in. Hg Calibrated by Fact & Scott

		Gas v	olume	T	emperati					
Vae	Orifice manometer setting (\Delta H), in. H2O	Wet test meter (V _u), ft ³	Dry gas meter (V _d), ft ³	Wet test meter (t _w), of/R	Inlet (t _d),	Qas met Outlet (td), or/R		Time (Θ), min	Yi	ΔΗ@ in. Η <mark>1</mark> 0
ر مي م	0.5	5	4.668	78 538	83 5 39.5	18 536,5	538	13.1	1.070	2.010
4	1.0	5	4.670	⁷⁸ 538	89 546.5	18 81 539.5	543	9.3	1.078	2.008
Ĺ	1.5	10	.9.390	78 53 8	40 96 553	82 544	548,5	15.5	1.082	2.070
ı	2.0	10	9.455	79 80 539.5		87 90548.5	553.5	i3,5	1.070	2.087
L	3.0	10	9.470	80 81 540.5	I	90 93551.5			1.081	2.109
ب	4.0	10. l	9.590	81 81 541	109567.5	96 555	561,3	9.8	1.082	2.138
-							•	Avg	1.077	2.070

ΔΗ, in. H ₂ O	ेम् 15.6	$V_{\rm d}(P_{\rm b} + \frac{13.6}{13.6})$ (E _w + 460)	$\Delta H\theta_{1} = \frac{0.0317 \Delta H}{P_{b} (t_{d} + 460)} \left[\frac{(t_{w} + 460) \Theta}{V_{w}} \right]^{2}$
0.5	0.0368	(5)(29.119X53B) 4, = (4.668X27.119+253.5)(538)	
1.0	0.0737	(5)(29,119)(543) 42: 14.67)(29.119+ 1/3.6)(538)	Hez= (0317)(1) [(538)(9.3)] 2
1.5	0.110	(10)(29.119)(548.5) 73 = (7.39)(29.119+11/3.6(53?)	Hez= (3317)(15) [(5384,177)]?
2.0	0.147	(10×27.119)(553.5) == (7.455)29.119+7/3.6)(539.5)	Her: (29,119)(553,5) (539,5) 10
3.0	0.221	(10)(24,119 X557,5) 4==(9.47)(29.119+3/36/540,5)	Hes= (.0317)(3) [(540.5)(111)]
4.0	0.294	(10.1/29.119)(5-61.3) 4- (9.59)(29.119+4/13.6)(5-41)	Heb= (-9.119)(561.3)[(541)(1.6)]2

^a If there is only one thermometer on the dry gas meter, record the temperature under t_d.

barnetist pressure, Pp = 29.342 in. Hg Dry bas meter number Rockardle Pretest Y 10072 (1.053) RESTREET DRY CAS METER CALIBRATION DATA FORM (English units) PRE-OFF ST PRE OFF ST

Y	$V_{W} P_{D} (L_{d} + 469)$	VA (P) + AII (tw + 460)	05/12/34/45//54/155	0 40 (9.252)(20.345+ 21.1552)	1. 495 (10) 27 2 3 3 3 5 2 4 3 4 3 5 2 4 3 4 3 4 3 5 2 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	491 (4) 24 343 (5)	
	:	· - i		1.090	1.495	1.491	1
		Vacuum serting,	in. Ilg	4.0	4.4	4.4	
		Time (0),	mim	23.40	24.19	25.6	
!	Wet test Dry gas meter meter Inlet Outlet Average	· ·	10 10 10 10 10 10 10 10 10 10 10 10 10 1	536 54 86541 5 54.25 23.40	465 25	536	
lume	Dry gas meter	(⁽ _d),	ft	9.25	4.272	11 612 12	
Gas volume	Wet test meter	(^ / N)	ft.	01	10	10	
Orifice	manometer setting,	(AH),	111. 112	\$ 100 m	2,0)

 $^{
m a}$ If there is only one thermometer on the dry gas meter, record the temperature under $^{
m t}_{
m d}$.

 $V_{d}=0$ as volume passing through the dry gas meter, ft. $V_{\rm s} = G_{
m dS}$ volume passing through the wet test meter, ft .

YRANGE = 1.0232 (-- > 1.1309

 $\tau_{\rm w} = {\rm Temperature}$ of the gas in the wet test meter, $^{\rm o} F_{\rm s}$

 $t_{i,j}$ = Temperature of the inlet gas of the dry gas meter, ^{o}F . $t_{i,j}$ = Temperature of the outlet gas of the dry gas meter, ^{o}F .

 t_d^{-1} = Average temperature of the gas in the dry gas meter, obtained by the average of $t_{d_1}^{-1}$ and $t_{d_1}^{-1}$, °F. ΔM = Pressure differential across orifice, in M_20 .

 $Y_i=Ratio$ of accuracy of wet test meter to dry gas meter for each run. $Y_i=Average$ ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest $Y_i \pm 0.05 Y_i$

 $\frac{1}{2} = \mathbb{R}$ arometric pressure, in. $\mathbb{R}_{\mathcal{X}}$

e a Time of calibration run, min.

Quality Assurance Handhook M5-2.4A

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

Plant Offert Date 18 Now Com Meter box number Natively 41 Barometric pressure, $P_b = 29.82$ in. Hy hry gas meter number , and a section Test number Post

		0						The state of the s		the second secon
Orifice	Gas volume	o I ume	Ţ	Temperature	re					λ
manometer	Wet test	Dry gas	Wet test	_	Dry gas meter	eter				
setting,	meter	meter	meter	Inlet	Outlet	Inlet Outlet Average				V F. (t. + 460)
(QI),	(5)	(^ ^)	(t°),	(t,),	(t,),	(t,), (t,), (t,), a	Time	Vacuum	Υ.	
1n. H ₂ 0	ft ³	ft ³	. A	;r &	20 F	, i	(0),	Setting,	, -	$V_{d} \left(\frac{P_{b}}{13} + \frac{1M_{1}}{13} \right) \left(\frac{V_{b}}{V_{c}} + \frac{460}{13} \right)$
							4	9,, .,,		, , , , , , ,
0	01	9 157	272	5/12	1007	1	,	, ,	107	(10)(29.82)(540.5)
		7/17	25 51	277	14728	277 74750 240,5 76 (15	5), 07	4	1.085	(9 152) (2.82 + 3) (543)
diso. S	10	9.214	25 546	89547	26415	547 8254 5 544 25 20 18	20.18	7	1.479	(679 (10)(21 82)(544. 25)
10. 0° 10	10	9.277	5675 6	895495	2011/2	895495 8754115 547 16 10 10	20.00	77	1475	(4/5) (13/5/10) 24 ×
			XX	277777	11111	1/1/1/	\$ CY		(1)	(4, 272)(13.886)(547.5)

 $^{\mathtt{a}}$ If there is only one thermometer on the dry gas meter, record the temperature under t $_{\mathrm{d}}$

Y = 1, 480

91

 $V_{\rm w}=$ Gas volume passing through the wet test meter, ft.

 V_d = Gas volume passing through the dry gas meter, ft³.

 $t_{\rm W}$ = Temperature of the gas in the wet test meter, $^{\circ}{
m F}$.

= Temperature of the inlet gas of the dry gas meter, $^{\mathrm{o}}\mathrm{F}$.

= Temperature of the outlet gas of the dry gas meter, $^{
m o}{
m F.}$

 $t_d = Average$ temperature of the gas in the dry gas meter, obtained by the average of t_d and t_d , of

 ΔM = Pressure differential across orifice, in. $\mathrm{H}_2\mathrm{O}$.

 ${
m Y_i}$ = Ratio of accuracy of wet test meter to dry $_{
m gas}$ meter for each run.

Y = Average ratio of accuracy of well est meter to dry gas meter for all three runs; tolerance = pretest Y ± 0.05 Y. . . 65385

= Barometric pressure, in. Hg.

 θ = Time of calibration run, min.

STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

Date 190cT88 Thermocouple number DI

29.232/
Amrient temperature 26 °C Barometric pressure 29.175 in. Hg

Calibrator GARRISON/ Reference: mercury-in-glass NBS

Scott

other

			otne:	
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	1CE 139T4	0	0	
	ROOM TEMP	25.5	26.1	0.6
	 			-

aEvery 30°C (50°F) for each reference point.

b_{Type} of calibration system used.

$$\begin{bmatrix} (\text{ref temp, °C + 273}) - (\text{test thermom temp, °C + 273}) \\ & \text{ref temp, °C + 273} \end{bmatrix} 100 \le 1.5\%.$$

* MUST BE WITHIN 1°C OF REF

Quality Assurance Handbook M2-2.10

STACK TEMPFRATURE SENSOR CALIBRATION DATA FORM

Date	1910cT 8		ermocouple numb z	C 221/
			etric pressure 2	29./75 in. Hg
Calibrator		Reference: m	ercury-in-glass	NBS
	5 CO 77	c	ther	
Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
0	ICE BATH	0	0	—
_	ROOM TEMP	26.0	26.6	0.6
				•

b_{Type} of calibration system used.

$$\begin{bmatrix}
\frac{\text{(ref temp, °C + 273)} - \text{(test thermom temp, °C + 273)}}{\text{ref temp, °C + 273}}
\end{bmatrix}$$
100<1.5%.

* MUST BE WITHIN 10C OF REF

Quality Assurance Handbook M2-2.10

aEvery 30°C (50°F) for each reference point.

DRY GAS METER STACK TEMPERATURE SENSOR CALIBRATION DATA FORM

NUTECH

I	Date	Oct 88	Т	hermocouple num	ber INLET/OUTLET
i	Ambient te	emperature _		metric pressure	
(Calibrator	SCOTT	Reference:	mercury-in-glas:	s MBS
=		T		other	
-	Reference point number	Source ^b (specify)	Reference thermometer temperature, °C	Thermocouple potentiometer temperature, °C	Temperature difference,
IN	LET				
	_	HOT WATER BATH	43	44	1.0
-	_	ROOM TEMP	26	26.5	0.5
00	TLET				
	-	HOT WATER BATH	43	43.5	0.5
_	_	room TEMP	26	27.2	1, 2

^aEvery 30°C (50°F) for each reference point.

b_{Type} of calibration system used.

* MUST BE WITHIN 3°C OF REF.

Quality Assurance Handbook M2-2.10

 $[\]frac{C\left[\frac{\text{(ref temp, °C + 273)} - \text{(test thermom temp, °C + 273)}}{\text{ref temp, °C + 273}}\right]}{\text{ref temp, °C + 273}}$

STACK SENSOR CALIBRATION: 19-20 Oct 88

SENSOR #	REFERENCE TEMPERATURE (deg K) X axis		
P1	273.30 371.90 447.00	273.60 373.60 450.20	Regression Output: Constant -4.30 Std Err of Y Est 0.20 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			<pre>X Coefficient(s) 1.02 Std Err of Coef. 0.00 % Deviation @ 2000 F(1093.3 K) = 1.29%</pre>
P2	273.30 371.80 447.60	273.60 373.60 450.80	Regression Output: Constant -4.27 Std Err of Y Est 0.11 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			<pre>X Coefficient(s)</pre>
Р3	273.30 371.90 447.60	274.10 374.10 450.80	Regression Output: Constant -2.96 Std Err of Y Est 0.03 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			<pre>X Coefficient(s)</pre>
P 4	273.30 371.80 447.60	273.60 373.60 450.80	Regression Output: Constant -4.27 Std Err of Y Est 0.11 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			<pre>X Coefficient(s) 1.02 Std Err of Coef. 0.00</pre>
			% Deviation @ 2000 F(1093.3 K) = 1.27% 95

P5	273.30 371.90 447.60	274.10 373.60 450.80	Regression Output: Constant -3.03 Std Err of Y Est 0.37 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			X Coefficient(s) 1.01 Std Err of Coef. 0.00
			% Deviation @ 2000 F(1093.3 K) = 1.08%
P6	273.30 371.90 447.60	273.30 373.60 450.80	Regression Output: Constant -5.03 Std Err of Y Est 0.09 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			<pre>X Coefficient(s) 1.02 Std Err of Coef. 0.00</pre>
			% Deviation @ 2000 F(1093.3 K) = 1.37%
P7	273.30 371.90 447.60	273.30 373.60 450.80	Regression Output: Constant -5.03 Std Err of Y Est 0.09 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			<pre>X Coefficient(s) 1.02 Std Err of Coef. 0.00</pre>
			% Deviation @ 2000 F(1093.3 K) = 1.37%
P8	273.60 371.80 449.40	273.60 373.00 452.40	Regression Output: Constant -4.75 Std Err of Y Est 0.39 R Squared 1.00 No. of Observations 3.00 Degrees of Freedom 1.00
			X Coefficient(s) 1.02 Std Err of Coef. 0.00
			% Deviation @ 2000 F(1093.3 K) = 1.25%

TYPE S PITOT TUBE INSPECTION DATA FORM

#4A

Quality Assurance Handbook M2-1.7

Pitot tube assembly level? \checkmark yes \checkmark no Pitot tube openings damaged? \checkmark yes (explain below) \checkmark no $\circ_1 = \frac{1}{2} \circ (<10^\circ)$, $\circ_2 = \frac{2}{2} \circ (<10^\circ)$, $\beta_1 = \frac{2}{2} \circ (<5^\circ)$, $\beta_2 = \frac{3}{3} \circ (<5^\circ)$ (1.7875) $\gamma = \frac{1}{4} \circ$, $\theta = \frac{1}{2} \circ (<5^\circ)$ (1.7875) $\gamma = \frac{1}{4} \circ$, $\theta = \frac{1}{2} \circ (<5^\circ)$ (1.7875) $\gamma = \frac{1}{4} \circ$ $\gamma = \frac{1}{4} \circ$

Calibration required? _____ yes ____ no

Quality Assurance Handbook M2-1.7

41760

RULES AND REGULATIONS

Section No. 3.1.10 Revision No. 0 Date January 15, 1980 Page 3 of 11

Figure 2-2. Properly constructed Type S pitot tube, shown in: (a) end view; face opening planes perpendicular to transverse axis; (b) top view; face opening planes parallel to longitudinal axis; (c) side view; both legs of equal length and centerlines coincident, when viewed from both sides. Baseline coefficient values of 0.84 may be assigned to pitot tubes constructed this way.

Figure 2-3. Types of face-opening misalignment that can result from field use or improper construction of Type S pitot tubes. These will not affect the baseline value $c^* \mathbb{C}p(s)$ so long as a 1 and $a_2 < 10^{\circ}$, β_1 and $\beta_2 < 5^{\circ}$, z < 0.32 cm (1/8 in.) and w < 0.03 cm (1/32 in.) (citation 11 in Section 6).

ഗ $^{\mathrm{Type}}$ Figure 1.5

Section No. 3.1.1 Revision No. 0 Date January 15, 1980 Page 8 of 15

Figure 1.6 Position of dimension measurement. (continued)

Section No. 3.1.1 Revision No. 0 Date January 15, 1980 Page 9 of 15

DEGREE INDICATING LEVEL POSITION FOR DETERMINING O, THEN CALCULATING W

Figure 1.6 (continued)

APPENDIX H

Acetone Blank Results and Particulate Emissions Results

ACETONE BLANK ANALYTICAL DATA FORM

Plant: BLDG D, SILVER RECCEERY INCINEICATIONS

Location: CFFNTTAFIB NE

Date of analysis: 2 Dec 88

Density of acetone(p_a): 0.79 g/ml

Acetone blank $volume(V_a): 100$ ml

Acetone wash volume(v_{aw}): 400 ml

Average gross wt: 105089.8 mg

Tare wt: 105089.6 mg

Acetone blank residue concentration(Ca):

$$c_a = \frac{m_{ab}}{v_a \times p_a} = \frac{6.2}{100 \times 0.79} = \frac{0.0025 \text{ mg/g}}{}$$

Weight of residue in acetone $wash(W_a)$:

$$W_a = C_a \times V_{aw} \times p_a = (0.0025)(400)(0.79) = 0.79 \text{ mg}$$

AIR POLLUTION PARTICULATE ANALYTICAL DATA							
DATE OFFUTT AFB			2 DEC 36 NOV 88		RUN NUMBER ACETONE ISLIANT		BNK
BUILDING NUMBER			SOURCE NU	MBER ,			
i.		PARTIC	ULATES				
17	EM		FINAL WEIGHT		INITIAL WEIGHT (gm)		HT PARTICLES
FILTER NUMBER							
ACETONE WASHINGS (Probe, Front Hal: Filter)		105.0	105.0898 10.		05.0896		0002
BACK HALF (If needed	BACK HALF (if needed)						
	Total W	Total Weight of Particulates Collected			0.	0002 am	
н.		WAT	TER				
ITEM		f .	FINAL WEIGHT (@m)		INITIAL WEIGHT (Am)		EIGHT WATER (Am)
IMPINGER 1 (H20)							
IMPINGER 2 (H20)							
IMPINGER 3 (Dry)							
IMPINGER 4 (SIIIca Ge	n						
		Total W	Total Weight of Water Collected				дт
111.		GASE	S (Dry.)			L	
ITEM	ANALYSIS	ANALYSIS 2		LYSIS 3	ANALYSIS		AVERAGE
VOL % CO2							
V0L ≒ 0 ₂							
VOL - CO							
VOL % N2							
Vol % N2 = (100% - % CO2 - % O2 - % CO)							

```
XROM THETH 5
           XEOR METH ?
                                        RUK NUMBER
                                                                                            XROW *MASSFLO*
RUM NUKBER
                                        INCIN 1, R2, 8 NOV 88
INCIN 1-R1, 9 NOV-88
                                                              P(n;
                                                                                 RUN NUMBER
                                        METER BOX YO
                                                                                             1.1000
                                                                                                       RUN
METER BOX YO
                                                   1,9278
                                                              \mathbf{p}_{i}.
            1.6778
                                                                                 VOL MTR STD
                                                              FUN
                                                                                            35.9210
                                                                                                       $(0)
                                        BAR PRESS 7
                                                                                 STACK DSCFM ?
SHE PRESS ?
                                                  26.274
                                                                                        1,085.0000
                                                                                                       RUN
           28.7260
                                        METER VOL 3
                                                                                 FRONT 1/2 MG 2
HETER VOL
                                                              RUN
                                                                                            24.0000
                                                                                                       RUN
           73, 9706
                                                                                 BACK 1/2 NG 2
 MIR TEMP FR
                                                                                             6.6666
                                                                                                       pape.
                                        t other set
                                        PEMILED BEFORE
PEMOVEL BEFORE
                                       DRY GES METER 2
                                                                                 F GP/DSCF = 0.010?
ger gas Heter :
                                                              Ptu,
                                                                                 F MG/MMM = 23.5944
                                        STATIS HOW IN 2
                                                                                 F LB/HR = 0.0963
 STATIC HOR IN 1
                                       -0.1600
STACK TEMP.
                                                              Pile.
                                                                                 F KG/HR = 0.0437
             .0000
           -0.1600
                                                              RUP;
                                                 518.0000
 STACK TEMP.
          554.0906
                                                                                           XROM -MRSSFLO-
                                                  26.2600
                                                              PUN
 ML. WATER ?
                                        IMP. 1. HOH = 2.7
           32.6086
                                                                                 PUN HUMBER
                                                                                                       RUN
[HP. 2 HOH = 2.9
                                                                                            1.2000
                                        . HOR=2.7
                                                                                 YOU HTR STD 2
. M9H≠2.9
: 3027
                                                                                           34.0590
                                                                                                       PUN
                                                                                 STACK BSCFM ?
           2,2698
                                                   2.6866
                                                              Fill
                                                                                                       FIJN
                                                                                          994, 6666
                                                                                 FRONT 1/2 MG ?
          11.780
                                                  18.2880
                                                                                                       PUN
                                                                                           47,1006
                                                              RIJN
                                                                                 BACK 1/2 MG ?
                      ۶.)۱,
HOL MY OTHERS
                                                                                            9.0900
                                                                                                       RUN
                                        MOL UT OTHERS
                      PIP.
                                                              PUN
                                                                                 F GR/DSCF = 0.0213
MHd =29.82
                                        HMd =29.14
MM MET=29.79
                                                                                    MG/MMM = 48.8355
                                        MW WET=28.84
                                                                                 F LB/HR = 8.1818
                                                                                 F KG/HR = 9.0825
SORT PSTS ?
                                        SORT PSTS ?
           9.4855
                      RUN
                                                              Plib
                                                   8.3195
TIME MIN 9
                                        TIME KIN ?
                      ријч
                                                              PUN
          64,0000
                                                  72.0008
NOZZLE DIA 2
                                        MOZZLE DIA ?
            . 3760
                      RUN
                                                    .3760
                                                              RITH
STR DIA INCH 1
                                        STK DIA INCH ?
          17.0000
                                                              RUN
                                                  17.6669
* VG1 MTE 370 = 35,321
STK PPES ABS = 28,71
                                        * VOL MTR STD = 34.059
                                          STK PRES ABS = 28,96
  •01 H8H GRS = 1.86
                                          VOL HOH GAS = 0.95
  % #019TURE = 2.99
                                           : MOISTURE = 3.72
  MOL DRY GRS = 0.971
                                          MOL DRY GAS = 6.973
  % NITROGEN = 81.18
                                          % HITROGEN = 79.20
  MOL HT DRY = 29.82
                                          MOL WT BRY = 29.14
  MOL WT WET = 28.78
                                          MOL MT MET = 28.84
  VELOCITY FPS = 23.73
                                          VELOCITY FPS = 20.67
  STACK AREA = 1.58
                                          STACK AREA = 1.58
  STACK ACEM = 2-244.
                                          STACK ACFM = 1,955.
* STACK ESCEM = 1,689
                                        * STACK DSCFM = 994.
  % ISOKIKETIC = 105.43
                                          % ISOKINETIC = 97.75
```

) KROM "METH 5" RUN NUMBER XROM *MASSELO* INCIN 1, P3, 8 NOV 35 PER NUMBER METER BOX YO 1.7000 1.8778 MATERIAL O DELTA H 32.6578 STACK DSCFM RUN BAP PPESS 2 28.4744 914,0000 METER VOL FF0-7 1 2 MG 1 31.7890 17,6000 MTR TEMP F? EACH 1-2 HG 2 FUN 211 69.0000 6.6666 % OTHER GRA REMOVED BEFORE BPY GAS METER ? F GR/DSCF = 0.0093 RUN F MG/MMM = 19.8328 STATIC HOH IN ? F LE/HR = 0.0652 -6.1690 RUK F KG/HR = 0.0296 STACK TEMP. RUN 493.0000 ML. MATER ? 17.3900 PUN IMP. % HOF = 2.4 % HOH=3.4 0.0027 1.9020 PU). % OXYGEN? 18.6600 PUs % CO ? PUS HOL HT OTHER? RUK MWd =29.03 NW WET=28.76 SORT PSTS ? 7.4248 PUN TIME MIN ? 29% 72.0000 NOZZLE DIA ? .3769 Pilk STK DIA INCH ? 17.0000 * VOL MTR STD = 32.657 STK PRES ABS = 28.96 VOL HOH GAS = 0.31 2 MOISTURE = 2.43 MOL BRY GAS = 0.976 % MITROGEN = 79.68 MOL MT DRY = 29.03 MOL NT WET = 28.76 VELOCITY FPS = 18.47 STACK AREA = 1.58 STRCK ACEM = 1,747.

The second of th

110

* STRCK DSCFM = 914. % ISOKINETIC = 191.42

1

XROM "ME	ETH 5))	
RUN NUMBER		XROM *N Run Number	ETH 5.	XROM *NASS	FLO-
INCIN 2, R1, 4 NOV	88 RUN	INCIN 2, P2, 4 NOV	88		
METER BOX Y?	KUN		RUN	RUN HUMBER 2,1000	RUN
1.0770	RUN	METER BOX Y?	Ditty	2.1000	, no.
DELTA 4?		1.0770 DELTA P?	PUN	VOL MITE STD 1	
3.4600 BAR PRESS 2	PUN	1.1100	RUN	53.6610	Pth,
28.3700	RUN	BAR PRESS ?		STACK DSCFM 1 1.467.0608	Pills.
METER VOL 2	_	20.3700 METER VOL 1	RUN	FPONT 1 3 80 7	•
51.1920 HTR TEMP F?	Rijei	32,7390	PUN	44.0000	PHS
59,0000	BUK	HTR TEHP F?		BACK 1:2 MG 7 BARRA	PIJE
% OTHER GAS		65.0000 % OTHER GAS	RUN	******	
REMOVED BEFORE DRY GAS METER ?		RENOVED BEFORE		6 AS 1105 A 6434	
DKI GHO HEIE"	Riller	DRY GRS METER ?		F GR 190F = 0.6173 F MG/MMM = 30.2723	
STATIC HOH IN ?		CTOTIC HOW IN O	RUN	F L6/HR = 0.1142	
-,220A	RUN	STATIC HOH IN ? 2200	RUN	F KG/HF = 8.0518	
STACK TEMP. 648.0000	RUN	STACK TEMP.			
ML. WATER ?		649.9000	Bûh	XPON THRSS	FLC.
37,9000	Kiin	ML. WATER ? 27.5000	PUN	PUN NUMBER	
IMP. % HOH = 3.2		IMP. % HOH = 3.7	7.70	2.2000	Rii-
* HOH=3.2		* H0U=7 7		VOL MTR STD 2	
		% HOH=3.7		701 HIR S F 7	PU:
1 1927				eutom Dáúte o	
3.1000	89d	% CO2^	0.001	1,821,8020	Sto
% OXYGEN?		2.5000 % OXYGEN?	PUN	FRUMT 1 2 MG 7 82.3000	RUN
17.0009 2 CO 2	₽ÜN	17.7000	RUN	BACK 1/2 MG ?	
4.00 /	RUN	% CO ?		9.8088	RUN
HOL AT OTHER?		MOL HT OTHER?	RUN	•	
	RUN :	HOL HI OTHER.	RUN	F GR/DSCF = 0.8377	
MWd =29.18				F MG/MNK = 86.1879	
MW WET=28.82		MW = 29.11 MW WET=28.70		F LB/HR = 0.3296 F KG/HP = 0.1495	
		NA MET-EUTTO			
SORT PSTS 2					
10.2976	RUN	SQRT PSTS ? 10.3938	RUN		
TIME MIN ?	Ditti	TIME MIN 2	10.1		
64.0000 HOZZLE DIA ?	RUN	64.0000	RUN		
.5910	PUH	NOZZLE DIA ?	RUN		
STK BIR INCH ?	_	STK DIR INCH?	BUB		
16.5000	Bûr:	16.5000	RUN		
* VOL MTR STD = 53.4	661	. UN: MID CID - 77	701		
STK PRES AF : 23		* VOL MTR STD = 33. STK PRES ABS = 28			
VOL HOH GAS = 1.78		VOL HOH GAS = 1.2			
% MOISTURE = 3.22		% MOISTURE = 3.70			
MOL BRY GAS = 0.90 % NITROGEN = 79.90		MOL DRY GAS = 0.9			
		% HITROGEN = 79.8	9		
MOL NT DRY = 29.18		MOL MT DRY = 29.1	1		
MOL MT MET = 28.83		MOL WT WET = 28.7	8		
VELOCITY FPS = 25.		VELOCITY FPS = 26	.17		
STACK AREA = 1.48		STACK AREA = 1.48			
STACK ACFM = 2,305		STACK ACFM = 2,33			
* STACK BSCFN = 1.06		* STACK DSCFM = 1.8			
% ISOKINETIC = 90	r. 3 3	% ISOKINETIC = 9	9,41		

gras migar ^{ast}h in the graphic transfer entropy of the second of the s

RUH

ogi,

F.

XROH "HETH 5") XROM *MASSELOT RUN NUMBER INCIN 2 R3. 4 NOV 88 RUN NUMBER PUN 1.3069 METER BOX Y? 1.0770 RUN VOC #TR 57% 2 DELTE H? 32.8926 PUSSTACK DECEM ? BAR PRESS 2 987.0009 28.3700 PUN FRONT 1 3 MS 1 METER VOL ? 29.3000 32.1539 5404 1 3 MG MER TEMP FE 6.0000 68.5000 RUN 1: OTHER GAS REMOVED BEFORE F GR:030F = 8.8137 DRY GAS METER ? F MG/KMK = 31.4575 PUN F LB/HP = 0.1167 STATIC HOH IN ? F KG/HP = 0.0528 -,2288 STACK TEMP. RUN RUN 623.0000 ML. WATER ? RUN 29.3000 IMP. 3 HOH = 4.8 2 HOH=4.8 % 002? 2.0000 RUL % OXYGEN? 18,2898 RUN % CO ? RUN MOL NT OTHER? RUN MNd =29.85 MW WET=28.68 SORT PSTS ? 9.9864 TIME HIN ? 64.0000 RUN NOZZLE DIA ? RUN STK DIA INCH ? 16.5000 RUN * VOL MTR STD = 32.892 STK PRES ABS = 28.35 **VOL HOH GAS = 1.38** % MOISTUPE = 4.02 MOL BRY GAS = 0.960 2 NITROGEN = 79.80 MOL WY BRY = 29.05

112

STACK AREA = 1.48 STACK ACFM = 2,226.

* STACK DSCFM = 987.

% ISOKINETIC = 100.35

MOL MT WET = 28.60 VELOCITY FPS = 24.98

XPON THET,			" VDD# •#CCCC		
RUN NUMBER	RUN NUMBER	XRON *METH 5* Run number		XROM *MASSFLOT	
INCIN 3, R1, 9 NOV 98	INCIN 3, P2, 9 NOV	98 RUN	RUN NUMBER		
METER BOX Y?	METER BOX YO	# (J.)	3.1900	₽.,	
1.0779 RUK	1.9778	PUN	115 NTD 675 0		
DELTA HO	DELTA "?		VOL MTP STB 11 39,9178	fu.	
1.5788 PUN	1.5200	Ptite	STACK DSCFM ?	PUH	
EAR PRESS 2	BAR PPESS ?			p ;14,	
28,7860 PUN METER VOL 2	28.7060	biiM	FRONT 1 2 MG 1		
37,4560 FUN	METER VOL ?			ş	
MTR TEMP F7	36,4899	RUN	BACK 1/2 MG 2		
54,0000 990	MTR TEMP F7	0.00	9.969°	F	
: OTHER GAS	63.0000 % OTHER CAS	P(p)			
REMOVEL BEFORE	REMOVED BEFORE				
DRY GAS METER ?	DRY GAS METER ?		F GR/DSCF = 6.0061		
RUH	PAT GAG RETER	RUN	F MG/MMM = 13.8896		
STATIC HOW IM ?	STATIC HOH IN ?		F LB/PR = 9.8425		
21 00 PUN	2100	RUN	F #G/HF = 0.0193		
STRCK TEMP.	STACK TEMP.				
619.0000 PUN	627.0000	RUH	REDK HASSE	Fü.	
ML. WATER 2 27.2000 PUN	ML. WATER ?		DIM NUMBER		
27.2000 PUN IME. 1. HOH = 7.1	21.6999	RUN	PUN NUMBER 3.2000	PU¥	
	IMP. % HOH = 3.6			F. U.*	
: HOH=3.1	1 HOH=2		VOL MIR STEP		
	. non-c.		38.1390	P(n)	
			STROK DECEM 5		
1, 0022	% CG2?		803.0000	PD-	
2.1000 PUN	2,5899	PIJN	FRONT 1/2 MG ?		
": DXYGEN?	: OXYGEH?			brit.	
17.3000 RUN % CO ?	17.5 600	RUN	BACK 1/2 Mg ?		
RUN	% CO ?		8.0900	Riji);	
HOL NT OTHER?		RUH			
Bliff	HOL WT OTHER?	Ditto	F GR/DSCF = 0.0091		
		RUN	F MG/MMH = 20,7462		
MHd ≈29.03	MWd =29.19		F LB/HR = 0.0624		
MW WET=28.69	MW WET=23.81		F KG/HR = 0.0283		
	W 421 20101				
SORT PSTS ?					
12.2595 PUN	SORT PSTS ?				
TIME HIN ?	12.0985	RUH			
64,0000 PUN	TIME MIN ?	B			
MOZZLE BIR 2	64.0 000	RUN			
.376@ PUF	NOZZLE DIA 2 .3768	PIJN			
STK DIA INCH ?	STE DIE INCH 1	FUT			
13.3800 RUN	13.3800	PIIN			
* VOL MTR STB = 39,917		•			
STK PRES ABS = 28.69 VOL HOH GAS = 1.28 MOISTUPE = 3.11 MOL DRY GAS = 0.969 WITROGEN = 86.60 MOL HT BRY = 29.03 MOL HT BRY = 28.69 VELOCITY FPS = 38.69 STACK AREA = 0.98 STACK DSCFM = 1.799.	* VOL MTR STD = 38.1 STK PRES ARS = 28. VOL HOH GAS = 1.02 % MOISTURE = 2.68 MOL DPY GAS = 9.97 % NITROGEN = 80.00 MOL MT DRY = 29.10 MOL MT MET = 28.81 VELOCITY FPS = 38. STACK AREH = 0.98 STACK ACFM = 1.770 * STACK DSCFM = 803.	69 2 74 3 3 22			
% ISOVINETIC = 96.68	% ISOKINETIC = 93	.98			

XRON -HETH 5-XROM THASSELDT RUN NUMBER INCIN 3, R3, 9 NOV 88 ROM NUMBER Pille 3,3690 HETER BOX Y? PUN 1.0779 VOL MIR SID 9 BELTA H? PUN 39.0730 1.4288 BAR PRESS 2 771.9898 28.7060 KUN FRONT 1/2 HG METER VOL ? 19,1909 BROX 1 1 MG 2 RIN 36.3650 HTR TEMP F? 0.0000 PHN 63.0000 % OTHER GAS PEMOVED BEFORE F GR/DECF = 6.8877 DRY GAS METER 7 F MG/MMM = 17.7159 RIIN F LE HF = 8.8512 STATIC HOH IN ? F #G/HP = 0.0270 RUS -.2100 STACK TEMP. 623.0000 RUH ML. MATER ? PH 27.4000 IMP. 1 HOH = 3.3 % HOH=3.3 % 002° PHI. 1.2000 % OXYGEN? 17.9000 p(p)% CO ? PHK MOL MT OTHER? RUH MMd =28.91 MW WET=28.55 SORT PSTS ? RUN 11.6027 TINE MIN ? RUN 64.8888 NOZZLE DIA ? .3760 RUK STK DIA INCH ? 13.3800 * VOL MTR STB = 38.873 STK PRES ABS = 28.69 YOL HOH CAS = 1.29 % NOISTURE = 3.28 HOL DRY GAS = 0.967 Z NJTROGEN = 80.90 MOL HT DRY = 28.91 MOL HT WET = 28.55 VELOCITY FPS = 29.11 STACK ARER = 0.93

āij.

\$ 16.

Pirk

114

STACK ACFM = 1,786. * STACK DSCFM = 771. % ISOKINETIC = 97.73

~~₀

XRON -METH)	XRON THETH 51	XROM THPSSFLOT
RUM HUMBER INCIH 4, R1, 7 NOV 88	RUN HUMBER INCIN 4, R2-7 HOV 89 PUN	RUN NUKBER 4.1000 PUM
PUN METER BOX Y?	METER BOX Y?	VOL HTR STD ?
1.0770 FRM PELTA HO	DELTA H?	34.5920 RUN STACK 130FM ?
,9366 PHR BAR PRESS ?	RAP PPESS ?	1.165.0000 PUN
28,5318 PUN METER VOL 2	26,5210 PPN METER VOL 2	FRONT 1 2 MG (61,4800 PUN
32,8500 PUN MIR TEMP F?	31,6730 PUF MTP TEMP F1	9907 1 2 M3 1 9,0090 RUM
56,8888 P.M. MOTHER GAS	58. 0000 PUN 3. O ther G as	
REMOVED BEFORE DRY GAS METER ?	REMOVED BEFORE DRY GRS METER ?	F GR/DSCF = 0.6274 F MG/MMM = 62.6815
PIJN STATIC HON IN 2	RUN STATIC HOH IN ?	F LB/HR = 0.2735 F KG/HF = 0.1241
1800 RUN STRCK TEMP.	∼.1860 RUM Stack Temp.	XROM TMASSFLOT
638.0000 PUN ML. WATER ?	587.0900 PIJM ML. WATER ?	RUN HUMBER
25.5000 PHN IMP. 2 HOH = 3.4	22.8008 PUH 1MP. % HOH = 7.2	4.2000 RUN
% HOh=3.4	% HOH≈7.2	VOL MTR ETE T 32,5218 - RUK
		\$790K 000FM 0 1/105.0086 PH
% 0022 3.4000 RUN	1, 0021 2,4000 Pu n	FRONT 1/2 MG ² 3 05.5000 RU N
% OXYSEN? 15.6988 PUN	1: OXYGEN? 15.2000 PUN	BACK 1/2 MG 3 0.0000 RUN
2 C6 2 RUN	1. CO 7 RUN	
MOL HT OTHER?	MOL WT OTHER?	F GR/DSCF = 0.1447 F MG/MMM = 331.0654
MWd =29.17	MWd =28.99	F LB/HR = 1.3703 F FG/HR = 0.6216
MW WET=28.79	MW WET=28.64	, , , a m. cross.
SORT PSTS ?	SOFT PSTS ?	
9.6288 PUN TIME MIR ?	TIME MIN ?	
72.0000 PUN NOZZLE DIA ?	NOZZLE BIA 2	
.3760 PUN STK DIA INCH ?	.3760 RUN STK DIR INCH ?	
18.2508 PUN	18.2500 RUN	
* YOL MTR STD = 34.592 STK PRES RRS = 28.51 VOL HOH GRS = 1.20 % MOISTURE = 3.35 MOL DRY GRS = 8.966 % HITPOGEN = 81.00 MOL NT DRY = 29.17 MOL NT MET = 28.79 VELOCITY FPS = 24.13 STACK APEA = 1.82 STACK APEA = 1.82 STACK DSCFM = 2.631. * STACK DSCFM = 1.165. % ISOKINETIC = 97.23	* VOL MTR STD = 32.587 STK PRES ABS = 28.51 VOL HOH GAS = 1.87 % MOISTURE = 3.19 MOL BRY GAS = 0.968 % NITROGEN = 82.40 MOL NT DRY = 28.99 MOL NT NET = 28.64 VELOCITY FPS = 21.79 STACK AREA = 1.82 STACK DSCFM = 1.75 % ISOKINETIC = 96.59	

:

115

```
XROM *METH 5*
                                                 KROM -MASSELF
RUN HUMBER
INCIN 4. P3, 7 NOV 88
                                      PUN NUMBER
                                                 4,3000
METER BOX YO
                     RUN
           1.0770
                                      VOL KIR ETE ?
DELTA 42
                                      35,7516
STACK ISCEM 7
BAR PRESE ?
                                                            PHi
                                             1 213,0000
                     RITE
          28,2518
                                       FRONT 1 2 MG
METER VOL ?
                                                 24.7869
          35,5650
                                       BACK 1 3 MG 1
MTR TEMP F7
                                                  9.0099
                                                            Fdy
          61.0000
                     RUH
% OTHER GAS
REMOVED EEFORE
                                       F GR/ISCF = 0.0164
DRY GAS METER 7
                                       F MG MMM = 33,7342
                                       F LB HF = 0.1078
STATIC HOH IN "
                                       F KG/HP = 0.0499
                      RUE
STACK TEMP.
                      RUN
         455.9999
 ML. WATER ?
                      PIJN
          20.5000
IMP. 4 HOH = 2.6
% HOH=2.6
                      PHIL
% OXYGEN?
          16.3000
                      PUN
 1.08 2
                      DIJN
 HOL HT OTHER?
                      RUN
 MWd =28.91
 MW WET=28.63
 SORT PSTS ?
                      RUN
           8.3030
 TIME MIN ?
           72.0000
                      PUN
 NOZZLE BIA ?
                      RUN
 STR DIR INCH ?
           18.2500
                      RUN
 * VOL MTR STD = 36.751
   STK PRES ABS = 28.24
   VOL HOH GAS = 8.96
   % MOISTURE = 2.56
   MOL BRY GRS = 0.974
   2 NITROGEN = 82.10
MOL WT TPY = 28.91
   MOL MT NET = 28.63
   VELOCITY FPS = 28.97
   STACK APEA = 1.82
   STACK ACFM = 2,286.
 * STACK DSCFM = 1,213.
   % ISOKINETIC = 95.20
```

are the control of th

The state of the s

APPENDIX I Hydrogen Chloride Emissions Calculations

XROM TMASSEL	XROM "MASSFLO"	XROM *MASSEL
PUN NUMBER	RUN NUMBER	RUN NUMBER
1.1000 P		3.1 0 00 P
VOL MIR STD ?	YOU MTR STD ?	YOL NTR STD ?
	53.6610 RUM	39.9170 RI
STACK DSCFM ?	STACK DSCFM 2	STACK DSCFM ?
	A 1,007.0000 RUN	817.0000 RI
FRONT 1/2 MG 2	FRONT 1/2 MG ?	FRONT 1/2 MG ?
14.7000 R		48.2000 PI BACK 1/2 Mg ?
BACK 1/2 MG ? 8.8888 R	8RCK 1/2 MS ? 8 0.0000 RUN	0.0000 RI
0,000		
F GR/DSCF = 0.0063	F GR/DSSF = 0.0135	F GR/DSCF = 0.0186
F MG/MMN = 14.4516	F MG/MMM = 30.9304	F MG/MMH = 42.6419
F L8/HR = 0.0589	F LB/HR = 0.1167	F LB/HR = 0.1305
F KG/HR = 0.0267	F KG/HR = 0.0529	F KG/HR = 0.0592
XROM "MASSFL"	- XROM -MASSFLO-	XROM *MASSFL(
RUN NUMBER	RUN NUMBER	RUN NUMBER
1.2000 R	1	3.2000 PI
YOL MIR STD ?	VOL MTR STD ?	VOL MTR STD ?
34.0590 R		38.1290 RU Stack DscFM ?
STACK DSCFM ?	STACK DSCFM ?	803.0600 RI
994.0000 RI	N 1.021.0000 RUN FRONT 1/2 MG ?	FRONT 1/2 MG ?
FRONT 1/2 MG ? 25,0000 RI		55.1000 RU
BACK 1/2 MG ?	BACK 1/2 MG ?	BACK 1/2 MG ?
8.6000 R		9.0000 RU
F GR/DSCF = 0.0113	F GR/DSCF = 0.0051	F GR/DSCF = 0.0223
F MG/MMM = 25.9212	F MG/NMN = 11.7291	F MG/MMM = 51.0321
F 18/HR = 0.0965	F LB/HR = 0.0449	F LB/HR = 0.1535
F KG/HR = 0.0438	F KG/HR = 0.0203	F KG/HR = 0.0696
XRON -MASSFLO	- XROM *MASSFLO*	XROM *MRSSFLO
RUN NUMBER	RUN NUMBER	RUN NUMBER
1.3000 R		3.3000 RU
VOL NTR STD 2	WOL MTR STD ?	YOL MTR STD ?
32.6570 RU		38.8730 RU
STACK DSCFM ?	STOCK DISCEM 2	STACK DSCFM ?
914.0000 PL		771.0000 RU
FRONT 1/2 MG ?	FRONT 1/2 MG ?	FRONT 1/2 MG ?
8.7000 RL		18.8090 RU
BACK 1/2 MG ? 0.0000 RU	BACK 1/2 MG ? • 0.0000 RUN	BACK 1/2 MG ? 8.0000 RU
0.000 0 KL	חטא שפשטיט	6.0000 KO
F GR/DSCF = 0.004 1	F GR/DSCF = 0.0628	F GR/DSCF = 0.0076
F MG/MMH = 9.4078	F MG/MMM = 6.4418	F MG/MMM = 17.4376
EB/HR = 0.0322	F LB/HR = 0.0238	F LB/HR = 0.0504
F KG/HR = 0.0146	F KG/HR = 0.0108	: F KG/HR = 0.0228
. V@\UK - 0.0140	r Kartik Ololos	1 Martitle Asserte

XROM *MASSFLO*

RUN NUMBER

4.1888 RUN

VOL MTR STD ?

34.5929

STACK DSCFM ?

1,165.0090 RIJN

FRONT 1/2 MG ?

26.8000

PUN

BACK 1/2 MG ?

PUN 9.0000

F GR/DSCF = 0.0120

F MG/MMM = 27.3594

F = LB/HR = 0.1194

F KG/HR = 0.0542

XROM "MASSELO"

RUN NUMBER

4.2000 RUN

YOL MTR STD ?

32,5870 RUN

STACK DSCFM ?

RUN 1,105.0000

FRONT 1/2 MG ?

11.1000 RUN

BACK 1/2 MG ?

FUN **0.0**006

F GR/DSCF = 0.0053

F = MG/MMM = 12.8289

F LB/HR = 0.9498

F KG/HR = 0.0226

XROM "MASSFLO"

RUH NUMBER

4.3000 PUN

YOU MIR STD ?

36.7510

STACK DSCFM ?

1,213.0000 RUN

FRONT 1/2 MG ?

RUN 3.0000

BACK 1/2 MG 2

RUN 0.0000

F GR/DSCF = 0.8013

F MG/MMM = 2.8827

F LB/HR = 0.0131

F KG/HR = 0.0059

$\label{eq:APPENDIX J} \mbox{${\tt Example}$ Heavy Metals Emissions Calculations}$

PUN NUMBER

1.1 ZH

PIII',

VOL MIR SID ?

35,9210

RUH

FUN

RUH

STACK DECEM ?

1,089.0000

FRONT 1/2 MG ?

.7000

BACK 1/2 MG ?

0.0000 RUN

F GR/DSCF = 0.0003

F MG/MMM = 0.6882

F LB/HR = 0.0028

F = KG/HR = 8.8013

XROM "MASSFLO"

RUN NUMBER

1.2 ZH

PHIL

VOL MTR STD ?

34.0590 RUN

STACK DSCFM ?

RUN 994.6666

FRONT 1/2 MG ?

.3610 RUN

BACK 1/2 MG ?

RUX 9.9999

F GR/DSCF = 0.8003

F MG/MMH = 0.3743

F LB/HR = 0.0014

F KG/HR = 0.0006

XROM "MRSSFLO"

RUN NUMBER

1.3 ZN

RUH

YOL MTR STD ?

32.6570 PUN

STACK DSCFM ?

Pilit 914.0000

FRONT 1/2 MG ?

RUN .3448

BACK 1/2 MG ?

0.9999 PUN

F GR/DSCF = 0.0002

F MG/MMM = 0.3720

F = L8/HR = 0.9913

F KG/HR = 8.0005

123

DISTRIBUTION LIST

	Copies
HQ AFSC/SGPB Andrews AFB DC 20334-5000	1
HQ USAF/SGPA Bolling AFB DC 20332-6188	1
AAMRL/TH Wright-Patterson AFB OH 45433-6573	1
HQ SAC/SGPB Offutt AFB NE 68113-5001	1
USAF Regional Medical Center Wiesbaden/SGB APO New York 09220-5300	1
OL AD, USAFOEHL APO San Francisco 96274-5000	1
USAFSAM/TSK Brooks AFB TX 78235-5301	1
Defense Technical Information Center(DTIC) Cameron Station Alexandria VA 22304-6145	2
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
HQ SAC/DE Offutt AFB NE 68113-5001	1
Ehrling Berquist USAF Regional Hospital/SGPB Offutt AFB NE 68113-5300	3
55 CSG/DEEV	3

FILMED 1-89